IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i6p138-d559210.html
   My bibliography  Save this article

An AI-Enabled Stock Prediction Platform Combining News and Social Sensing with Financial Statements

Author

Listed:
  • Traianos-Ioannis Theodorou

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Alexandros Zamichos

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Michalis Skoumperdis

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Anna Kougioumtzidou

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Kalliopi Tsolaki

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Dimitris Papadopoulos

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Thanasis Patsios

    (Media2Day Publishing S.A., 15232 Athens, Greece)

  • George Papanikolaou

    (Media2Day Publishing S.A., 15232 Athens, Greece)

  • Athanasios Konstantinidis

    (Department of Electrical Engineering, Imperial College London, London SW7 2AZ, UK)

  • Anastasios Drosou

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

  • Dimitrios Tzovaras

    (Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece)

Abstract

In recent years, the area of financial forecasting has attracted high interest due to the emergence of huge data volumes (big data) and the advent of more powerful modeling techniques such as deep learning. To generate the financial forecasts, systems are developed that combine methods from various scientific fields, such as information retrieval, natural language processing and deep learning. In this paper, we present ASPENDYS, a supportive platform for investors that combines various methods from the aforementioned scientific fields aiming to facilitate the management and the decision making of investment actions through personalized recommendations. To accomplish that, the system takes into account both financial data and textual data from news websites and the social networks Twitter and Stocktwits. The financial data are processed using methods of technical analysis and machine learning, while the textual data are analyzed regarding their reliability and then their sentiments towards an investment. As an outcome, investment signals are generated based on the financial data analysis and the sensing of the general sentiment towards a certain investment and are finally recommended to the investors.

Suggested Citation

  • Traianos-Ioannis Theodorou & Alexandros Zamichos & Michalis Skoumperdis & Anna Kougioumtzidou & Kalliopi Tsolaki & Dimitris Papadopoulos & Thanasis Patsios & George Papanikolaou & Athanasios Konstanti, 2021. "An AI-Enabled Stock Prediction Platform Combining News and Social Sensing with Financial Statements," Future Internet, MDPI, vol. 13(6), pages 1-22, May.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:6:p:138-:d:559210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/6/138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/6/138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    3. T. Roncalli & G. Weisang, 2016. "Risk parity portfolios with risk factors," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 377-388, March.
    4. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    5. Jian Wang & Junseok Kim, 2018. "Predicting Stock Price Trend Using MACD Optimized by Historical Volatility," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, December.
    6. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    7. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    8. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    9. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    10. Myles E. Mangram, 2013. "A Simplified Perspective Of The Markowitz Portfolio Theory," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 7(1), pages 59-70.
    11. Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
    12. Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Garc'ia-M'endez & Francisco de Arriba-P'erez & Ana Barros-Vila & Francisco J. Gonz'alez-Casta~no, 2024. "Targeted aspect-based emotion analysis to detect opportunities and precaution in financial Twitter messages," Papers 2404.08665, arXiv.org.
    2. Cristescu Marian Pompiliu & Nerişanu Raluca Andreea & Mara Dumitru Alexandru, 2022. "Using Data Mining in the Sentiment Analysis Process on the Financial Market," Journal of Social and Economic Statistics, Sciendo, vol. 11(1-2), pages 36-58, December.
    3. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    4. Marian Pompiliu Cristescu & Raluca Andreea Nerisanu & Dumitru Alexandru Mara & Simona-Vasilica Oprea, 2022. "Using Market News Sentiment Analysis for Stock Market Prediction," Mathematics, MDPI, vol. 10(22), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    3. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    4. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    5. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    8. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    10. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    11. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    13. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    14. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    15. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    16. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    17. Mert Edali, 2022. "Pattern‐oriented analysis of system dynamics models via random forests," System Dynamics Review, System Dynamics Society, vol. 38(2), pages 135-166, April.
    18. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    19. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    20. Thi Thu Giang Nguyen & Robert Ślepaczuk, 2022. "The efficiency of various types of input layers of LSTM model in investment strategies on S&P500 index," Working Papers 2022-29, Faculty of Economic Sciences, University of Warsaw.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:6:p:138-:d:559210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.