Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Joel F. Houston & Chen Lin & Zhongyan Zhu, 2016. "The Financial Implications of Supply Chain Changes," Management Science, INFORMS, vol. 62(9), pages 2520-2542, September.
- Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2016.
"Stock Market Volatility and Learning,"
Journal of Finance, American Finance Association, vol. 71(1), pages 33-82, February.
- Marcet, Albert & Nicolini, Juan Pablo & Adam, Klaus, 2007. "Stock Market Volatility and Learning," CEPR Discussion Papers 6518, C.E.P.R. Discussion Papers.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2015. "Stock Market Volatility and Learning," Working Papers 720, Federal Reserve Bank of Minneapolis.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2011. "Stock Market Volatility and Learning," CEP Discussion Papers dp1077, Centre for Economic Performance, LSE.
- Albert Marcet & Klaus Adam & Juan Pablo Nicolini, 2008. "Stock Market Volatility and Learning," UFAE and IAE Working Papers 732.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2014. "Stock Market Volatility and Learning," Working Papers 336, Barcelona School of Economics.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2008. "Stock market volatility and learning," Working Paper Series 862, European Central Bank.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2011. "Stock market volatility and learning," LSE Research Online Documents on Economics 121739, London School of Economics and Political Science, LSE Library.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2012. "Stock Market Volatility and Learning," Working Papers 12-06, University of Mannheim, Department of Economics.
- Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
- Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
- Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
- Raehyun Kim & Chan Ho So & Minbyul Jeong & Sanghoon Lee & Jinkyu Kim & Jaewoo Kang, 2019. "HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction," Papers 1908.07999, arXiv.org, revised Nov 2019.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
- Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
- Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
- Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
- Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
- Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
- Hanshuang Tong & Jun Li & Ning Wu & Ming Gong & Dongmei Zhang & Qi Zhang, 2024. "Ploutos: Towards interpretable stock movement prediction with financial large language model," Papers 2403.00782, arXiv.org.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Yuhui Jin, 2024. "GraphCNNpred: A stock market indices prediction using a Graph based deep learning system," Papers 2407.03760, arXiv.org, revised Jul 2024.
- Luke Sanborn & Matthew Sahagun, 2023. "Media Moments and Corporate Connections: A Deep Learning Approach to Stock Movement Classification," Papers 2309.06559, arXiv.org.
- Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
- Qinkai Chen & Christian-Yann Robert, 2021. "Graph-Based Learning for Stock Movement Prediction with Textual and Relational Data," Papers 2107.10941, arXiv.org, revised Dec 2021.
- Yu Zhao & Huaming Du & Ying Liu & Shaopeng Wei & Xingyan Chen & Fuzhen Zhuang & Qing Li & Ji Liu & Gang Kou, 2022. "Stock Movement Prediction Based on Bi-typed Hybrid-relational Market Knowledge Graph via Dual Attention Networks," Papers 2201.04965, arXiv.org, revised Jan 2022.
- Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
- Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
- Kuang, Pei, 2014.
"A model of housing and credit cycles with imperfect market knowledge,"
European Economic Review, Elsevier, vol. 70(C), pages 419-437.
- Pei Kuang, 2014. "A Model of Housing and Credit Cycles with Imperfect Market Knowledge," Discussion Papers 14-07, Department of Economics, University of Birmingham.
- Pei Kuang, 2013. "Imperfect Knowledge About Asset Prices and Credit Cycles," Discussion Papers 13-02, Department of Economics, University of Birmingham.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- Gomes, Orlando, 2009.
"Stability under learning: The endogenous growth problem,"
Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
- Orlando Gomes, 2008. "Stability under Learning: the Endogenous Growth Problem," Working Papers Series 1 ercwp1708, ISCTE-IUL, Business Research Unit (BRU-IUL).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-06-19 (Big Data)
- NEP-CMP-2023-06-19 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.08740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.