IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.08740.html
   My bibliography  Save this paper

Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction

Author

Listed:
  • Sheng Xiang
  • Dawei Cheng
  • Chencheng Shang
  • Ying Zhang
  • Yuqi Liang

Abstract

The price movement prediction of stock market has been a classical yet challenging problem, with the attention of both economists and computer scientists. In recent years, graph neural network has significantly improved the prediction performance by employing deep learning on company relations. However, existing relation graphs are usually constructed by handcraft human labeling or nature language processing, which are suffering from heavy resource requirement and low accuracy. Besides, they cannot effectively response to the dynamic changes in relation graphs. Therefore, in this paper, we propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series. In particular, we first generate the company relation graph for each trading day according to their historic price. Then we leverage a transformer encoder to encode the price movement information into temporal representations. Afterward, we propose a heterogeneous graph attention network to jointly optimize the embeddings of the financial time series data by transformer encoder and infer the probability of target movements. Finally, we conduct extensive experiments on the stock market in the United States and China. The results demonstrate the effectiveness and superior performance of our proposed methods compared with state-of-the-art baselines. Moreover, we also deploy the proposed THGNN in a real-world quantitative algorithm trading system, the accumulated portfolio return obtained by our method significantly outperforms other baselines.

Suggested Citation

  • Sheng Xiang & Dawei Cheng & Chencheng Shang & Ying Zhang & Yuqi Liang, 2023. "Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction," Papers 2305.08740, arXiv.org.
  • Handle: RePEc:arx:papers:2305.08740
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.08740
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joel F. Houston & Chen Lin & Zhongyan Zhu, 2016. "The Financial Implications of Supply Chain Changes," Management Science, INFORMS, vol. 62(9), pages 2520-2542, September.
    2. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    3. Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2016. "Stock Market Volatility and Learning," Journal of Finance, American Finance Association, vol. 71(1), pages 33-82, February.
    4. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
    5. Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
    6. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    7. Raehyun Kim & Chan Ho So & Minbyul Jeong & Sanghoon Lee & Jinkyu Kim & Jaewoo Kang, 2019. "HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction," Papers 1908.07999, arXiv.org, revised Nov 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
    2. Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
    3. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
    4. Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
    5. Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
    6. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    7. Hanshuang Tong & Jun Li & Ning Wu & Ming Gong & Dongmei Zhang & Qi Zhang, 2024. "Ploutos: Towards interpretable stock movement prediction with financial large language model," Papers 2403.00782, arXiv.org.
    8. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    9. Yuhui Jin, 2024. "GraphCNNpred: A stock market indices prediction using a Graph based deep learning system," Papers 2407.03760, arXiv.org, revised Jul 2024.
    10. Luke Sanborn & Matthew Sahagun, 2023. "Media Moments and Corporate Connections: A Deep Learning Approach to Stock Movement Classification," Papers 2309.06559, arXiv.org.
    11. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
    12. Qinkai Chen & Christian-Yann Robert, 2021. "Graph-Based Learning for Stock Movement Prediction with Textual and Relational Data," Papers 2107.10941, arXiv.org, revised Dec 2021.
    13. Yu Zhao & Huaming Du & Ying Liu & Shaopeng Wei & Xingyan Chen & Fuzhen Zhuang & Qing Li & Ji Liu & Gang Kou, 2022. "Stock Movement Prediction Based on Bi-typed Hybrid-relational Market Knowledge Graph via Dual Attention Networks," Papers 2201.04965, arXiv.org, revised Jan 2022.
    14. Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
    15. Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
    16. Kuang, Pei, 2014. "A model of housing and credit cycles with imperfect market knowledge," European Economic Review, Elsevier, vol. 70(C), pages 419-437.
    17. Pei Kuang, 2013. "Imperfect Knowledge About Asset Prices and Credit Cycles," Discussion Papers 13-02, Department of Economics, University of Birmingham.
    18. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    19. Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
    20. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.08740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.