IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.11972.html
   My bibliography  Save this paper

Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling

Author

Listed:
  • Liang Zeng
  • Lei Wang
  • Hui Niu
  • Ruchen Zhang
  • Ling Wang
  • Jian Li

Abstract

Price movement forecasting, aimed at predicting financial asset trends based on current market information, has achieved promising advancements through machine learning (ML) methods. Most existing ML methods, however, struggle with the extremely low signal-to-noise ratio and stochastic nature of financial data, often mistaking noises for real trading signals without careful selection of potentially profitable samples. To address this issue, we propose LARA, a novel price movement forecasting framework with two main components: Locality-Aware Attention (LA-Attention) and Iterative Refinement Labeling (RA-Labeling). (1) LA-Attention, enhanced by metric learning techniques, automatically extracts the potentially profitable samples through masked attention scheme and task-specific distance metrics. (2) RA-Labeling further iteratively refines the noisy labels of potentially profitable samples, and combines the learned predictors robust to the unseen and noisy samples. In a set of experiments on three real-world financial markets: stocks, cryptocurrencies, and ETFs, LARA significantly outperforms several machine learning based methods on the Qlib quantitative investment platform. Extensive ablation studies confirm LARA's superior ability in capturing more reliable trading opportunities.

Suggested Citation

  • Liang Zeng & Lei Wang & Hui Niu & Ruchen Zhang & Ling Wang & Jian Li, 2021. "Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling," Papers 2107.11972, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2107.11972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.11972
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    2. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    3. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Bryan Lim & Stefan Zohren & Stephen Roberts, 2020. "Detecting Changes in Asset Co-Movement Using the Autoencoder Reconstruction Ratio," Papers 2002.02008, arXiv.org, revised Sep 2020.
    7. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    8. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    9. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
    10. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    2. Lifan Zhao & Shuming Kong & Yanyan Shen, 2023. "DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting," Papers 2306.09862, arXiv.org, revised Apr 2024.
    3. Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
    4. Immo Stadtmüller & Benjamin R. Auer & Frank Schuhmacher, 2024. "Core-satellite investing with commodity futures momentum," Journal of Asset Management, Palgrave Macmillan, vol. 25(3), pages 261-287, May.
    5. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
    6. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    7. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    8. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    9. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    10. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    11. Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
    12. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    13. Plastun, Alex & Sibande, Xolani & Gupta, Rangan & Wohar, Mark E., 2019. "Rise and fall of calendar anomalies over a century," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 181-205.
    14. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    15. Cujean, Julien & Andrei, Daniel & Fournier, Mathieu, 2019. "The Low-Minus-High Portfolio and the Factor Zoo," CEPR Discussion Papers 14153, C.E.P.R. Discussion Papers.
    16. Plastun, Alex & Sibande, Xolani & Gupta, Rangan & Wohar, Mark E., 2020. "Price gap anomaly in the US stock market: The whole story," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    17. Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
    18. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    19. Bartram, Söhnke M. & Grinblatt, Mark, 2021. "Global market inefficiencies," Journal of Financial Economics, Elsevier, vol. 139(1), pages 234-259.
    20. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.11972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.