IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2437-d861812.html
   My bibliography  Save this article

A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting

Author

Listed:
  • Wai Khuen Cheng

    (Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia)

  • Khean Thye Bea

    (Faculty of Business and Finance, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia)

  • Steven Mun Hong Leow

    (Faculty of Business and Finance, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia)

  • Jireh Yi-Le Chan

    (Faculty of Business and Finance, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia)

  • Zeng-Wei Hong

    (Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan)

  • Yen-Lin Chen

    (Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

Stock forecasting is a significant and challenging task. The recent development of web technologies has transformed the communication channel to allow the public to share information over the web such as news, social media contents, etc., thus causing exponential growth of web data. The massively available information might be the key to revealing the financial market’s unexplained variability and facilitating forecasting accuracy. However, this information is usually in unstructured natural language and consists of different inherent meanings. Although a human can easily interpret the inherent messages, it is still complicated to manually process such a massive amount of textual data due to the constraint of time, ability, energy, etc. Due to the different properties of text sources, it is crucial to understand various text processing approaches to optimize forecasting performance. This study attempted to summarize and discuss the current text-based financial forecasting approaches in the aspect of semantic-based, sentiment-based, event-extraction-based, and hybrid approaches. Afterward, the study discussed the strength and weakness of each approach, followed with their comparison and suitable application scenarios. Moreover, this study also highlighted the future research direction in text-based stock forecasting, where the overall discussion is expected to provide insightful analysis for future reference.

Suggested Citation

  • Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2437-:d:861812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishu Gupta & Tarun Kumar Madan & Sukhman Singh & Ashutosh Kumar Singh, 2022. "HiSA-SMFM: Historical and Sentiment Analysis based Stock Market Forecasting Model," Papers 2203.08143, arXiv.org.
    2. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    3. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    4. Jiexia Ye & Juanjuan Zhao & Kejiang Ye & Chengzhong Xu, 2020. "Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction," Papers 2005.04955, arXiv.org, revised Oct 2020.
    5. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    6. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    7. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Jim-Min Lin & Yen-Lin Chen, 2022. "A Correlation-Embedded Attention Module to Mitigate Multicollinearity: An Algorithmic Trading Application," Mathematics, MDPI, vol. 10(8), pages 1-13, April.
    8. Verma, Rahul & Verma, Priti, 2007. "Noise trading and stock market volatility," Journal of Multinational Financial Management, Elsevier, vol. 17(3), pages 231-243, July.
    9. Deli Chen & Yanyan Zou & Keiko Harimoto & Ruihan Bao & Xuancheng Ren & Xu Sun, 2019. "Incorporating Fine-grained Events in Stock Movement Prediction," Papers 1910.05078, arXiv.org.
    10. Ronny Luss & Alexandre D'Aspremont, 2015. "Predicting abnormal returns from news using text classification," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 999-1012, June.
    11. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    12. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
    13. Zeyd Boukhers & Azeddine Bouabdallah & Cong Yang & Jan Jurjens, 2022. "Beyond Trading Data: The Hidden Influence of Public Awareness and Interest on Cryptocurrency Volatility," Papers 2202.08967, arXiv.org, revised Oct 2024.
    14. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    15. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
    16. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    17. Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    2. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    3. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    4. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    5. Sun, Andrew & Lachanski, Michael & Fabozzi, Frank J., 2016. "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 272-281.
    6. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    7. An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
    8. Eric. W. K. See-To & Yang Yang, 2017. "Market sentiment dispersion and its effects on stock return and volatility," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 283-296, August.
    9. Sun, Licheng & Najand, Mohammad & Shen, Jiancheng, 2016. "Stock return predictability and investor sentiment: A high-frequency perspective," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 147-164.
    10. Mazzotta, Stefano, 2022. "Immigration narrative sentiment from TV news and the stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 34(C).
    11. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    12. Zhi Da & Borja Larrain & Clemens Sialm & José Tessada, 2016. "Coordinated Noise Trading: Evidence from Pension Fund Reallocations," NBER Working Papers 22161, National Bureau of Economic Research, Inc.
    13. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    14. Santi, Caterina, 2023. "Investor climate sentiment and financial markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Alasdair Brown & Dooruj Rambaccussing & James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Economics Discussion Papers em-dp2016-01, Department of Economics, University of Reading.
    16. Michael Lachanski & Steven Pav, 2017. "Shy of the Character Limit: "Twitter Mood Predicts the Stock Market" Revisited," Econ Journal Watch, Econ Journal Watch, vol. 14(3), pages 302–345-3, September.
    17. Alberto Barroso Del Toro & Laura Vivas Crisol & Xavier Tort-Martorell, 2022. "The Sustainability Narrative: A Multi Study Using Event Studies to Analyse the American Energy Companies Shareholder’s Reaction to Sustainability News," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    18. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
    19. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2013, January-A.
    20. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2437-:d:861812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.