IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.05667.html
   My bibliography  Save this paper

Random matrix theory and nested clustered portfolios on Mexican markets

Author

Listed:
  • Andr'es Garc'ia-Medina
  • Benito Rodrigu'ez-Camejo

Abstract

This work aims to deal with the optimal allocation instability problem of Markowitz's modern portfolio theory in high dimensionality. We propose a combined strategy that considers covariance matrix estimators from Random Matrix Theory~(RMT) and the machine learning allocation methodology known as Nested Clustered Optimization~(NCO). The latter methodology is modified and reformulated in terms of the spectral clustering algorithm and Minimum Spanning Tree~(MST) to solve internal problems inherent to the original proposal. Markowitz's classical mean-variance allocation and the modified NCO machine learning approach are tested on financial instruments listed on the Mexican Stock Exchange~(BMV) in a moving window analysis from 2018 to 2022. The modified NCO algorithm achieves stable allocations by incorporating RMT covariance estimators. In particular, the allocation weights are positive, and their absolute value adds up to the total capital without considering explicit restrictions in the formulation. Our results suggest that can be avoided the risky \emph{short position} investment strategy by means of RMT inference and statistical learning techniques.

Suggested Citation

  • Andr'es Garc'ia-Medina & Benito Rodrigu'ez-Camejo, 2023. "Random matrix theory and nested clustered portfolios on Mexican markets," Papers 2306.05667, arXiv.org.
  • Handle: RePEc:arx:papers:2306.05667
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.05667
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    3. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben R. Craig & Margherita Giuzio & Sandra Paterlini, 2019. "The Effect of Possible EU Diversification Requirements on the Risk of Banks’ Sovereign Bond Portfolios," Working Papers 19-12, Federal Reserve Bank of Cleveland.
    2. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    3. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    4. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
    5. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    6. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    7. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
    8. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02354596, HAL.
    9. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    10. Adil Rengim Cetingoz & Jean-David Fermanian & Olivier Gu'eant, 2022. "Risk Budgeting Portfolios: Existence and Computation," Papers 2211.07212, arXiv.org, revised Sep 2023.
    11. Christian Bongiorno & Damien Challet, 2022. "Reactive global minimum variance portfolios with k-BAHC covariance cleaning," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.
    12. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe De Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Documents de travail du Centre d'Economie de la Sorbonne 19022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    14. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Post-Print halshs-02354596, HAL.
    15. Feng, Wenjun & Zhang, Zhengjun, 2023. "Risk-weighted cryptocurrency indices," Finance Research Letters, Elsevier, vol. 51(C).
    16. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    17. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    18. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    19. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.05667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.