IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-02354596.html
   My bibliography  Save this paper

Improving portfolios global performance using a cleaned and robust covariance matrix estimate

Author

Listed:
  • Emmanuelle Jay

    (Quanted & Europlace Institute of Finance, Fideas Capital)

  • Thibault Soler

    (Fideas Capital, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Eugénie Terreaux

    (DEMR, ONERA, Université Paris Saclay (COmUE) [Palaiseau] - ONERA - Université Paris Saclay (COmUE))

  • Jean-Philippe Ovarlez

    (DEMR, ONERA, Université Paris Saclay (COmUE) [Palaiseau] - ONERA - Université Paris Saclay (COmUE))

  • Frédéric Pascal

    (L2S - Laboratoire des signaux et systèmes - UP11 - Université Paris-Sud - Paris 11 - CentraleSupélec - CNRS - Centre National de la Recherche Scientifique, CentraleSupélec)

  • Philippe de Peretti

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Christophe Chorro

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

This paper presents how the most recent improvements made on covariance matrix estimation and model order selection can be applied to the portfolio optimization problem. The particular case of the Maximum Variety Portfolio is treated but the same improvements apply also in the other optimization problems such as the Minimum Variance Portfolio. We assume that the most important information (or the latent factors) are embedded in correlated Elliptical Symmetric noise extending classical Gaussian assumptions. We propose here to focus on a recent method of model order selection allowing to efficiently estimate the subspace of main factors describing the market. This non-standard model order selection problem is solved through Random Matrix Theory and robust covariance matrix estimation. Moreover we extend the method to non-homogeneous assets returns. The proposed procedure will be explained through synthetic data and be applied and compared with standard techniques on real market data showing promising improvements.

Suggested Citation

  • Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02354596, HAL.
  • Handle: RePEc:hal:cesptp:halshs-02354596
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02354596
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02354596/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    3. Joel Bun & Romain Allez & Jean-Philippe Bouchaud & Marc Potters, 2015. "Rotational invariant estimator for general noisy matrices," Papers 1502.06736, arXiv.org, revised Oct 2016.
    4. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    5. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    6. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    7. M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
    8. Plerou, V. & Gopikrishnan, P. & Rosenow, B. & Amaral, L.A.N. & Stanley, H.E., 2001. "Collective behavior of stock price movements—a random matrix theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 175-180.
    9. Rosenberg, Barr, 1974. "Extra-Market Components of Covariance in Security Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(2), pages 263-274, March.
    10. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    11. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    12. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    13. repec:dau:papers:123456789/4688 is not listed on IDEAS
    14. Hachem, Walid & Loubaton, Philippe & Mestre, Xavier & Najim, Jamal & Vallet, Pascal, 2013. "A subspace estimator for fixed rank perturbations of large random matrices," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 427-447.
    15. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    16. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    17. Serge Darolles & Patrick Duvaut & Emmanuelle Jay, 2013. "Multi-factor models and signal processing techniques: application to quantitative finance," Post-Print hal-01632892, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuelle Jay & Thibault Soler & Jean-Philippe Ovarlez & Philippe De Peretti & Christophe Chorro, 2019. "Robust covariance matrix estimation and portfolio allocation: the case of non-homogeneous assets," Documents de travail du Centre d'Economie de la Sorbonne 19023, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Emmanuelle Jay & Thibault Soler & Jean-Philippe Ovarlez & Philippe de Peretti & Christophe Chorro, 2019. "Robust covariance matrix estimation and portfolio allocation: the case of non-homogeneous assets," Post-Print halshs-02372443, HAL.
    3. Emmanuelle Jay & Thibault Soler & Jean-Philippe Ovarlez & Philippe de Peretti & Christophe Chorro, 2019. "Robust covariance matrix estimation and portfolio allocation: the case of non-homogeneous assets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02372443, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe De Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Documents de travail du Centre d'Economie de la Sorbonne 19022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Emmanuelle Jay & Thibault Soler & Eugénie Terreaux & Jean-Philippe Ovarlez & Frédéric Pascal & Philippe de Peretti & Christophe Chorro, 2019. "Improving portfolios global performance using a cleaned and robust covariance matrix estimate," Post-Print halshs-02354596, HAL.
    3. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    4. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    5. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    6. Yutong Lu & Gesine Reinert & Mihai Cucuringu, 2023. "Co-trading networks for modeling dynamic interdependency structures and estimating high-dimensional covariances in US equity markets," Papers 2302.09382, arXiv.org, revised May 2024.
    7. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    8. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    9. Michael Senescall & Rand Kwong Yew Low, 2024. "Quantitative Portfolio Management: Review and Outlook," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    10. Anshul Verma & Riccardo Junior Buonocore & Tiziana di Matteo, 2017. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Papers 1712.02138, arXiv.org, revised May 2018.
    11. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    12. Emmanuelle Jay & Thibault Soler & Jean-Philippe Ovarlez & Philippe de Peretti & Christophe Chorro, 2019. "Robust covariance matrix estimation and portfolio allocation: the case of non-homogeneous assets," Post-Print halshs-02372443, HAL.
    13. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    14. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    15. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    16. Fays, Boris & Papageorgiou, Nicolas & Lambert, Marie, 2021. "Risk optimizations on basis portfolios: The role of sorting," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 136-163.
    17. Alles Rodrigues, Alexandre & Casalin, Fabrizio, 2022. "Factor investing in Brazil: Diversifying across factor tilts and allocation strategies," Emerging Markets Review, Elsevier, vol. 52(C).
    18. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    19. Emmanuelle Jay & Thibault Soler & Jean-Philippe Ovarlez & Philippe de Peretti & Christophe Chorro, 2019. "Robust covariance matrix estimation and portfolio allocation: the case of non-homogeneous assets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02372443, HAL.
    20. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-02354596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.