IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.08703.html
   My bibliography  Save this paper

Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning

Author

Listed:
  • Christian Bongiorno
  • Damien Challet

Abstract

We introduce a $k$-fold boosted version of our Boostrapped Average Hierarchical Clustering cleaning procedure for correlation and covariance matrices. We then apply this method to global minimum variance portfolios for various values of $k$ and compare their performance with other state-of-the-art methods. Generally, we find that our method yields better Sharpe ratios after transaction costs than competing filtering methods, despite requiring a larger turnover.

Suggested Citation

  • Christian Bongiorno & Damien Challet, 2020. "Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning," Papers 2005.08703, arXiv.org, revised Mar 2023.
  • Handle: RePEc:arx:papers:2005.08703
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.08703
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Damien Challet, 2017. "Sharper asset ranking from total drawdown durations," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 1-22, January.
    2. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    3. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, January.
    4. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    5. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    6. Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    2. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    3. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
    4. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    5. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    6. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
    7. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    8. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    9. Christian Bongiorno & Damien Challet, 2023. "Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS," Papers 2309.17219, arXiv.org.
    10. Adil Rengim Cetingoz & Jean-David Fermanian & Olivier Gu'eant, 2022. "Risk Budgeting Portfolios: Existence and Computation," Papers 2211.07212, arXiv.org, revised Sep 2023.
    11. Andr'es Garc'ia-Medina & Benito Rodrigu'ez-Camejo, 2023. "Random matrix theory and nested clustered portfolios on Mexican markets," Papers 2306.05667, arXiv.org.
    12. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    13. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    14. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
    15. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    16. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    17. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    18. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    19. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    20. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.08703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.