Optimal Trading in Automatic Market Makers with Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Anthony Coache & Sebastian Jaimungal & 'Alvaro Cartea, 2022. "Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning," Papers 2206.14666, arXiv.org, revised May 2023.
- Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2022. "Constant Function Market Makers: Multi-asset Trades via Convex Optimization," Springer Optimization and Its Applications, in: Duc A. Tran & My T. Thai & Bhaskar Krishnamachari (ed.), Handbook on Blockchain, pages 415-444, Springer.
- Guillermo Angeris & Tarun Chitra & Alex Evans & Stephen Boyd, 2022. "Optimal Routing for Constant Function Market Makers," Papers 2204.05238, arXiv.org.
- Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
- Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Erhan Bayraktar & Asaf Cohen & April Nellis, 2024. "DEX Specs: A Mean Field Approach to DeFi Currency Exchanges," Papers 2404.09090, arXiv.org.
- David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
- Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
- Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
- Kevin Shuai Zhang & Traian Pirvu, 2021. "Pricing spread option with liquidity adjustments," Papers 2101.00223, arXiv.org.
- Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
- Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
- Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
- Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
- Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
- Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019.
"Pricing Options and Computing Implied Volatilities using Neural Networks,"
Risks, MDPI, vol. 7(1), pages 1-22, February.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing options and computing implied volatilities using neural networks," Papers 1901.08943, arXiv.org, revised Apr 2019.
- Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
- Alexandre Pannier & Cristopher Salvi, 2024. "A path-dependent PDE solver based on signature kernels," Papers 2403.11738, arXiv.org, revised Oct 2024.
- Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
- Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-05-15 (Computational Economics)
- NEP-FMK-2023-05-15 (Financial Markets)
- NEP-MST-2023-05-15 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.02180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.