IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.12387.html
   My bibliography  Save this paper

A deep learning algorithm for optimal investment strategies

Author

Listed:
  • Daeyung Gim
  • Hyungbin Park

Abstract

This paper treats the Merton problem how to invest in safe assets and risky assets to maximize an investor's utility, given by investment opportunities modeled by a $d$-dimensional state process. The problem is represented by a partial differential equation with optimizing term: the Hamilton-Jacobi-Bellman equation. The main purpose of this paper is to solve partial differential equations derived from the Hamilton-Jacobi-Bellman equations with a deep learning algorithm: the Deep Galerkin method, first suggested by Sirignano and Spiliopoulos (2018). We then apply the algorithm to get the solution of the PDE based on some model settings and compare with the one from the finite difference method.

Suggested Citation

  • Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
  • Handle: RePEc:arx:papers:2101.12387
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.12387
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albina Danilova & Michael Monoyios & Andrew Ng, 2009. "Optimal investment with inside information and parameter uncertainty," Papers 0911.3117, arXiv.org, revised Feb 2010.
    2. Fred Espen Benth & Kenneth Hvistendahl Karlsen & Kristin Reikvam, 2003. "Merton's portfolio optimization problem in a Black and Scholes market with non‐Gaussian stochastic volatility of Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 215-244, April.
    3. Marcel Nutz, 2009. "The Opportunity Process for Optimal Consumption and Investment with Power Utility," Papers 0912.1879, arXiv.org, revised Jun 2010.
    4. Paolo Guasoni & Scott Robertson, 2015. "Static Fund Separation Of Long-Term Investments," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 789-826, October.
    5. Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
    6. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    7. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    8. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    9. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    10. Zongxia Liang & Ming Ma, 2020. "Robust consumption‐investment problem under CRRA and CARA utilities with time‐varying confidence sets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1035-1072, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    3. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    4. Ben Boukai, 2021. "On the RND under Heston's stochastic volatility model," Papers 2101.03626, arXiv.org.
    5. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    6. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    7. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    8. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    9. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    10. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    11. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    12. Francesco C. De Vecchi & Elisa Mastrogiacomo & Mattia Turra & Stefania Ugolini, 2021. "Noether theorem in stochastic optimal control problems via contact symmetries," Papers 2102.03172, arXiv.org.
    13. Zongxia Liang & Ming Ma, 2020. "Robust consumption‐investment problem under CRRA and CARA utilities with time‐varying confidence sets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1035-1072, July.
    14. Fabrice Baudoin & Oleksii Mostovyi, 2024. "The indifference value of the weak information," Papers 2408.02137, arXiv.org.
    15. Kevin Shuai Zhang & Traian Pirvu, 2021. "Pricing spread option with liquidity adjustments," Papers 2101.00223, arXiv.org.
    16. Francesco C. De Vecchi & Elisa Mastrogiacomo & Mattia Turra & Stefania Ugolini, 2021. "Noether Theorem in Stochastic Optimal Control Problems via Contact Symmetries," Mathematics, MDPI, vol. 9(9), pages 1-34, April.
    17. Weixuan Xia, 2023. "Optimal Consumption--Investment Problems under Time-Varying Incomplete Preferences," Papers 2312.00266, arXiv.org, revised Jan 2025.
    18. Frei, Christoph & Mocha, Markus & Westray, Nicholas, 2012. "BSDEs in utility maximization with BMO market price of risk," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2486-2519.
    19. Marco Piccirilli & Tiziano Vargiolu, 2018. "Optimal Portfolio in Intraday Electricity Markets Modelled by L\'evy-Ornstein-Uhlenbeck Processes," Papers 1807.01979, arXiv.org.
    20. Ariel Neufeld & Marcel Nutz, 2015. "Robust Utility Maximization with L\'evy Processes," Papers 1502.05920, arXiv.org, revised Mar 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.12387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.