IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.05070.html
   My bibliography  Save this paper

Enhancing Fourier pricing with machine learning

Author

Listed:
  • Gero Junike
  • Hauke Stier

Abstract

Fourier pricing methods such as the Carr-Madan formula or the COS method are classic tools for pricing European options for advanced models such as the Heston model. These methods require tuning parameters such as a damping factor, a truncation range, a number of terms, etc. Estimating these tuning parameters is difficult or computationally expensive. Recently, machine learning techniques have been proposed for fast pricing: they are able to learn the functional relationship between the parameters of the Heston model and the option price. However, machine learning techniques suffer from error control and require retraining for different error tolerances. In this research, we propose to learn the tuning parameters of the Fourier methods (instead of the prices) using machine learning techniques. As a result, we obtain very fast algorithms with full error control: Our approach works with any error tolerance without retraining, as demonstrated in numerical experiments using the Heston model.

Suggested Citation

  • Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
  • Handle: RePEc:arx:papers:2412.05070
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.05070
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    5. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    6. Sergei Levendorskiĭ, 2012. "Efficient Pricing And Reliable Calibration In The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(07), pages 1-44.
    7. Gagan L. Choudhury & David M. Lucantoni, 1996. "Numerical Computation of the Moments of a Probability Distribution from its Transform," Operations Research, INFORMS, vol. 44(2), pages 368-381, April.
    8. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Gero Junike, 2023. "On the number of terms in the COS method for European option pricing," Papers 2303.16012, arXiv.org, revised Mar 2024.
    11. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    12. Bernd Engelmann & Frank Koster & Daniel Oeltz, 2021. "Calibration of the Heston stochastic local volatility model: A finite volume scheme," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-22, March.
    13. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    2. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    3. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    4. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    5. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    6. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    7. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    8. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    9. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    11. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    12. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    13. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    14. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    15. Sascha Desmettre, 2018. "Change of Measure in the Heston Model given a violated Feller Condition," Papers 1809.10955, arXiv.org, revised Oct 2019.
    16. F. Leung & M. Law & S. K. Djeng, 2024. "Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    17. Johannes Ruf & Weiguan Wang, 2020. "Hedging with Linear Regressions and Neural Networks," Papers 2004.08891, arXiv.org, revised Jun 2021.
    18. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    19. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    20. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 951-967, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.05070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.