A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.08.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
- Assari, Pouria & Dehghan, Mehdi, 2019. "A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 249-265.
- Bellour, A. & Sbibih, D. & Zidna, A., 2016. "Two cubic spline methods for solving Fredholm integral equations," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 1-11.
- Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
- Yousefi, S. & Razzaghi, M., 2005. "Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(1), pages 1-8.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pakniyat, A. & Parand, K. & Jani, M., 2021. "Least squares support vector regression for differential equations on unbounded domains," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Sun, Hongli & Lu, Yanfei, 2024. "A novel approach for solving linear Fredholm integro-differential equations via LS-SVM algorithm," Applied Mathematics and Computation, Elsevier, vol. 470(C).
- Hajimohammadi, Zeinab & Parand, Kourosh, 2021. "Numerical learning approximation of time-fractional sub diffusion model on a semi-infinite domain," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Ahadian, P. & Parand, K., 2022. "Support vector regression for the temperature-stimulated drug release," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Rahimkhani, P. & Ordokhani, Y., 2022. "Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
- Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019.
"Pricing Options and Computing Implied Volatilities using Neural Networks,"
Risks, MDPI, vol. 7(1), pages 1-22, February.
- Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing options and computing implied volatilities using neural networks," Papers 1901.08943, arXiv.org, revised Apr 2019.
- Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
- Alexandre Pannier & Cristopher Salvi, 2024. "A path-dependent PDE solver based on signature kernels," Papers 2403.11738, arXiv.org, revised Oct 2024.
- Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
- Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
- Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics," CIRJE F-Series CIRJE-F-1178, CIRJE, Faculty of Economics, University of Tokyo.
- Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse & Tuan Anh Nguyen, 2020. "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-34, April.
- Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
- Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
- Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
- Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
- William Lefebvre & Gr'egoire Loeper & Huy^en Pham, 2022. "Differential learning methods for solving fully nonlinear PDEs," Papers 2205.09815, arXiv.org.
- Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
More about this item
Keywords
Least squares support vector machines; Orthogonal kernel; Fredholm integral equation; Galerkin LS-SVR; Collocation LS-SVR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:114-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.