IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003617.html
   My bibliography  Save this article

Extensions of the deep Galerkin method

Author

Listed:
  • Al-Aradi, Ali
  • Correia, Adolfo
  • Jardim, Gabriel
  • de Freitas Naiff, Danilo
  • Saporito, Yuri

Abstract

We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos(2018)[25] to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker–Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton–Jacobi–Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).

Suggested Citation

  • Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003617
    DOI: 10.1016/j.amc.2022.127287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    4. Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hainaut, Donatien & Casas, Alex, 2024. "Option pricing in the Heston model with Physics inspired neural networks," LIDAM Discussion Papers ISBA 2024002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Michael Barnett & William Brock & Lars Peter Hansen & Ruimeng Hu & Joseph Huang, 2023. "A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty," Papers 2310.13200, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    2. Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
    3. Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
    4. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    5. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    6. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    7. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    8. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    9. Stephen Satchell & Susan Thorp, 2007. "Scenario Analysis with Recursive Utility: Dynamic Consumption Plans for Charitable Endowments," Research Paper Series 209, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    11. Orszag, J. Michael & Yang, Hong, 1995. "Portfolio choice with Knightian uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 873-900.
    12. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    13. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    14. Letendre, Marc-Andre & Smith, Gregor W., 2001. "Precautionary saving and portfolio allocation: DP by GMM," Journal of Monetary Economics, Elsevier, vol. 48(1), pages 197-215, August.
    15. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    16. Jorge Braga de Macedo & Jeffrey Goldstein & David Meerschwam, 1984. "International Portfolio Diversification: Short-Term Financial Assets and Gold," NBER Chapters, in: Exchange Rate Theory and Practice, pages 199-238, National Bureau of Economic Research, Inc.
    17. Pliska, Stanley R. & Ye, Jinchun, 2007. "Optimal life insurance purchase and consumption/investment under uncertain lifetime," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1307-1319, May.
    18. Castañeda, Pablo & Devoto, Benjamín, 2016. "On the structural estimation of an optimal portfolio rule," Finance Research Letters, Elsevier, vol. 16(C), pages 290-300.
    19. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    20. Raouf Boucekkine & Patrick Pintus & Benteng Zou, 2015. "Stochastic Stability of Endogenous Growth: Theory and Applications," AMSE Working Papers 1532, Aix-Marseille School of Economics, France.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.