IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.13726.html
   My bibliography  Save this paper

Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models

Author

Listed:
  • Zhouzhou Gu
  • Mathieu Lauri`ere
  • Sebastian Merkel
  • Jonathan Payne

Abstract

We propose and compare new global solution algorithms for continuous time heterogeneous agent economies with aggregate shocks. First, we approximate the agent distribution so that equilibrium in the economy can be characterized by a high, but finite, dimensional non-linear partial differential equation. We consider different approximations: discretizing the number of agents, discretizing the agent state variables, and projecting the distribution onto a finite set of basis functions. Second, we represent the value function using a neural network and train it to solve the differential equation using deep learning tools. We refer to the solution as an Economic Model Informed Neural Network (EMINN). The main advantage of this technique is that it allows us to find global solutions to high dimensional, non-linear problems. We demonstrate our algorithm by solving important models in the macroeconomics and spatial literatures (e.g. Krusell and Smith (1998), Khan and Thomas (2007), Bilal (2023)).

Suggested Citation

  • Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
  • Handle: RePEc:arx:papers:2406.13726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.13726
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marlon Azinovic & Jan v{Z}emliv{c}ka, 2023. "Economics-Inspired Neural Networks with Stabilizing Homotopies," Papers 2303.14802, arXiv.org.
    2. SeHyoun Ahn & Greg Kaplan & Benjamin Moll & Thomas Winberry & Christian Wolf, 2018. "When Inequality Matters for Macro and Macro Matters for Inequality," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 1-75.
    3. Greg Kaplan & Benjamin Moll & Giovanni L. Violante, 2018. "Monetary Policy According to HANK," American Economic Review, American Economic Association, vol. 108(3), pages 697-743, March.
    4. Fernando Alvarez & Francesco Lippi, 2022. "The Analytic Theory of a Monetary Shock," Econometrica, Econometric Society, vol. 90(4), pages 1655-1680, July.
    5. Yves Achdou & Jiequn Han & Jean-Michel Lasry & Pierre-Louis Lionse & Benjamin Moll, 2022. "Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 45-86.
    6. Brzoza-Brzezina, Michał & Kolasa, Marcin & Makarski, Krzysztof, 2015. "A penalty function approach to occasionally binding credit constraints," Economic Modelling, Elsevier, vol. 51(C), pages 315-327.
    7. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    8. Den Haan, Wouter J., 1997. "Solving Dynamic Models With Aggregate Shocks And Heterogeneous Agents," Macroeconomic Dynamics, Cambridge University Press, vol. 1(2), pages 355-386, June.
    9. Victor Duarte & Diogo Duarte & Dejanir H. Silva, 2024. "Machine Learning for Continuous-Time Finance," CESifo Working Paper Series 10909, CESifo.
    10. Aubhik Khan & Julia K. Thomas, 2008. "Idiosyncratic Shocks and the Role of Nonconvexities in Plant and Aggregate Investment Dynamics," Econometrica, Econometric Society, vol. 76(2), pages 395-436, March.
    11. Michael Barnett & William Brock & Lars Peter Hansen & Ruimeng Hu & Joseph Huang, 2023. "A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty," Papers 2310.13200, arXiv.org.
    12. Reiter, Michael, 2009. "Solving heterogeneous-agent models by projection and perturbation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 649-665, March.
    13. Aubhik Khan & Julia K. Thomas, 2007. "Inventories and the Business Cycle: An Equilibrium Analysis of ( S , s ) Policies," American Economic Review, American Economic Association, vol. 97(4), pages 1165-1188, September.
    14. S. Rao Aiyagari, 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 659-684.
    15. Fernández-Villaverde, Jesús & Ebrahimi Kahou, Mahdi & Perla, Jesse & Sood, Arnav, 2021. "Exploiting Symmetry in High-Dimensional Dynamic Programming," CEPR Discussion Papers 16285, C.E.P.R. Discussion Papers.
    16. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    17. Thomas Winberry, 2018. "A method for solving and estimating heterogeneous agent macro models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1123-1151, November.
    18. Maximilien Germain & Mathieu Lauri`ere & Huy^en Pham & Xavier Warin, 2021. "DeepSets and their derivative networks for solving symmetric PDEs," Papers 2103.00838, arXiv.org, revised Jan 2022.
    19. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2023. "Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 91(3), pages 869-901, May.
    20. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
    21. Anmol Bhandari & Thomas Bourany & David Evans & Mikhail Golosov, 2023. "A Perturbational Approach for Approximating Heterogeneous Agent Models," NBER Working Papers 31744, National Bureau of Economic Research, Inc.
    22. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    23. Ji Huang, 2023. "A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models," CESifo Working Paper Series 10600, CESifo.
    24. Adrien Bilal & Esteban Rossi-Hansberg, 2023. "Anticipating Climate Change Across the United States," NBER Working Papers 31323, National Bureau of Economic Research, Inc.
    25. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
    26. Reiter, Michael, 2010. "Approximate and Almost-Exact Aggregation in Dynamic Stochastic Heterogeneous-Agent Models," Economics Series 258, Institute for Advanced Studies.
    27. Adrien Bilal, 2023. "Solving Heterogeneous Agent Models with the Master Equation," NBER Working Papers 31103, National Bureau of Economic Research, Inc.
    28. Goutham Gopalakrishna, 2021. "ALIENs and Continuous Time Economies," Swiss Finance Institute Research Paper Series 21-34, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schesch, Constantin, 2024. "Pseudospectral methods for continuous-time heterogeneous-agent models," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    2. Papp, Tamás K. & Reiter, Michael, 2020. "Estimating linearized heterogeneous agent models using panel data," Journal of Economic Dynamics and Control, Elsevier, vol. 115(C).
    3. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    4. Kase, Hanno & Melosi, Leonardo & Rottner, Matthias, 2024. "Estimating Nonlinear Heterogeneous Agent Models with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1499, University of Warwick, Department of Economics.
    5. Jesús Fernández‐Villaverde & Samuel Hurtado & Galo Nuño, 2023. "Financial Frictions and the Wealth Distribution," Econometrica, Econometric Society, vol. 91(3), pages 869-901, May.
    6. Jesús Fernández-Villaverde & Joël Marbet & Galo Nuño & Omar Rachedi, 2023. "Inequality and the Zero Lower Bound," NBER Working Papers 31282, National Bureau of Economic Research, Inc.
    7. Emmet Hall-Hoffarth, 2023. "Non-linear approximations of DSGE models with neural-networks and hard-constraints," Papers 2310.13436, arXiv.org.
    8. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
    9. Thomas J. Sargent & John Stachurski, 2024. "Dynamic Programming: Finite States," Papers 2401.10473, arXiv.org.
    10. Emoto, Masakazu & Sunakawa, Takeki, 2021. "Applying the explicit aggregation algorithm to heterogeneous agent models in continuous time," Economics Letters, Elsevier, vol. 206(C).
    11. Boppart, Timo & Krusell, Per & Mitman, Kurt, 2018. "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," Journal of Economic Dynamics and Control, Elsevier, vol. 89(C), pages 68-92.
    12. Jiequn Han & Yucheng Yang & Weinan E, 2021. "DeepHAM: A Global Solution Method for Heterogeneous Agent Models with Aggregate Shocks," Papers 2112.14377, arXiv.org, revised Feb 2022.
    13. Pascal, Julien, 2024. "Artificial neural networks to solve dynamic programming problems: A bias-corrected Monte Carlo operator," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    14. Juan Carlos Parra‐Alvarez & Olaf Posch & Mu‐Chun Wang, 2023. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 304-330, April.
    15. Darracq Pariès, Matthieu & Notarpietro, Alessandro & Kilponen, Juha & Papadopoulou, Niki & Zimic, Srečko & Aldama, Pierre & Langenus, Geert & Alvarez, Luis Julian & Lemoine, Matthieu & Angelini, Elena, 2021. "Review of macroeconomic modelling in the Eurosystem: current practices and scope for improvement," Occasional Paper Series 267, European Central Bank.
    16. Francesco Ferlaino, 2024. "Does the financial accelerator accelerate inequalities?," Working Papers 538, University of Milano-Bicocca, Department of Economics.
    17. Juan Carlos Parra-Alvarez & Olaf Posch & Mu-Chun Wang, 2017. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," CESifo Working Paper Series 6717, CESifo.
    18. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    19. Nils M. Gornemann & Keith Kuester & Makoto Nakajima, 2021. "Doves for the Rich, Hawks for the Poor? Distributional Consequences of Systematic Monetary Policy," Opportunity and Inclusive Growth Institute Working Papers 50, Federal Reserve Bank of Minneapolis.
    20. Felipe Alves & Christian Bustamante & Xing Guo & Katya Kartashova & Soyoung Lee & Thomas Michael Pugh & Kurt See & Yaz Terajima & Alexander Ueberfeldt, 2022. "Heterogeneity and Monetary Policy: A Thematic Review," Discussion Papers 2022-2, Bank of Canada.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.13726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.