IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.08782.html
   My bibliography  Save this paper

Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning

Author

Listed:
  • Ali Al-Aradi
  • Adolfo Correia
  • Danilo Naiff
  • Gabriel Jardim
  • Yuri Saporito

Abstract

In this work we apply the Deep Galerkin Method (DGM) described in Sirignano and Spiliopoulos (2018) to solve a number of partial differential equations that arise in quantitative finance applications including option pricing, optimal execution, mean field games, etc. The main idea behind DGM is to represent the unknown function of interest using a deep neural network. A key feature of this approach is the fact that, unlike other commonly used numerical approaches such as finite difference methods, it is mesh-free. As such, it does not suffer (as much as other numerical methods) from the curse of dimensionality associated with highdimensional PDEs and PDE systems. The main goals of this paper are to elucidate the features, capabilities and limitations of DGM by analyzing aspects of its implementation for a number of different PDEs and PDE systems. Additionally, we present: (1) a brief overview of PDEs in quantitative finance along with numerical methods for solving them; (2) a brief overview of deep learning and, in particular, the notion of neural networks; (3) a discussion of the theoretical foundations of DGM with a focus on the justification of why this method is expected to perform well.

Suggested Citation

  • Ali Al-Aradi & Adolfo Correia & Danilo Naiff & Gabriel Jardim & Yuri Saporito, 2018. "Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning," Papers 1811.08782, arXiv.org.
  • Handle: RePEc:arx:papers:1811.08782
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.08782
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    2. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
    3. Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
    4. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    5. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    6. Haozhe Su & M. V. Tretyakov & David P. Newton, 2021. "Deep learning of transition probability densities for stochastic asset models with applications in option pricing," Papers 2105.10467, arXiv.org, revised Jul 2023.
    7. Arian, Hamid & Moghimi, Mehrdad & Tabatabaei, Ehsan & Zamani, Shiva, 2022. "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 500-525.
    8. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    9. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    10. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    11. Kevin Shuai Zhang & Traian Pirvu, 2021. "Pricing spread option with liquidity adjustments," Papers 2101.00223, arXiv.org.
    12. Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    13. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    14. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    15. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    16. Ren'e Carmona & Mathieu Lauri`ere, 2021. "Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance," Papers 2107.04568, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    2. Al-Aradi, Ali & Correia, Adolfo & Jardim, Gabriel & de Freitas Naiff, Danilo & Saporito, Yuri, 2022. "Extensions of the deep Galerkin method," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    5. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    6. Wolfgang Stummer, 2002. "Some Potential Means for Venture Valuation," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 7(3), pages 39-52, Fall.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Zaifu Yang & Rong Zhang, 2014. "Rational Addictive Behavior under Uncertainty," Discussion Papers 14/12, Department of Economics, University of York.
    9. Girlich, Hans-Joachim, 2003. "Transaction costs in finance and inventory research," International Journal of Production Economics, Elsevier, vol. 81(1), pages 341-350, January.
    10. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    11. David M. Kreps & Walter Schachermayer, 2020. "Convergence of optimal expected utility for a sequence of discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1205-1228, October.
    12. Francisco Campuzano-Bolarín & Fulgencio Marín-García & José Andrés Moreno-Nicolás & Marija Bogataj & David Bogataj, 2021. "Network Simulation Method for the evaluation of perturbed supply chains on a finite horizon," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 823-839, September.
    13. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    14. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    15. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    16. Wojakowski, Rafal M. & Ebrahim, M. Shahid & Shackleton, Mark B., 2016. "Reducing the impact of real estate foreclosures with Amortizing Participation Mortgages," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 62-74.
    17. Francisco Venegas Martínez & Abigail Rodríguez Nava, 2009. "Consumo y decisiones de portafolio en ambientes estocásticos: un marco teórico unificador," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 29-64, November.
    18. Jaimungal, Sebastian & Young, Virginia R., 2005. "Pricing equity-linked pure endowments with risky assets that follow Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 329-346, June.
    19. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
    20. Venegas-Martínez, Francisco & Polanco-Gaytán, Mayrén (ed.), 2011. "Macroeconomía Estocástica," Sección de Estudios de Posgrado e Investigación de la Escuela Superios de Economía del Instituto Politécnico Nacional, Escuela Superior de Economía, Instituto Politécnico Nacional, edition 1, volume 1, number 005, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.08782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.