IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v64y2023ics0275531922002227.html
   My bibliography  Save this article

How well do investor sentiment and ensemble learning predict Bitcoin prices?

Author

Listed:
  • Hajek, Petr
  • Hikkerova, Lubica
  • Sahut, Jean-Michel

Abstract

Investor sentiment is widely recognized as the major determinant of cryptocurrency prices. Although earlier research has revealed the influence of investor sentiment on cryptocurrency prices, it has not yet generated cohesive empirical findings on an important question: How effective is investor sentiment in predicting cryptocurrency prices? To address this gap, we propose a novel prediction model based on the Bitcoin Misery Index, using trading data for cryptocurrency rather than judgments from individuals who are not Bitcoin investors, as well as bagged support vector regression (BSVR), to forecast Bitcoin prices. The empirical analysis is performed for the period between March 2018 and May 2022. The results of this study suggest that the addition of the sentiment index enhances the predictive performance of BSVR significantly. Moreover, the proposed prediction system, enhanced with an automatic feature selection component, outperforms state-of-the-art methods for predicting cryptocurrency for the next 30 days.

Suggested Citation

  • Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002227
    DOI: 10.1016/j.ribaf.2022.101836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531922002227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2022.101836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    2. Yongkil Ahn & Dongyeon Kim, 2020. "Sentiment disagreement and bitcoin price fluctuations: a psycholinguistic approach," Applied Economics Letters, Taylor & Francis Journals, vol. 27(5), pages 412-416, March.
    3. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
    4. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    5. Jaroslav Bukovina & Matus Marticek, 2016. "Sentiment and Bitcoin Volatility," MENDELU Working Papers in Business and Economics 2016-58, Mendel University in Brno, Faculty of Business and Economics.
    6. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    7. Aharon, David Y. & Demir, Ender & Lau, Chi Keung Marco & Zaremba, Adam, 2022. "Twitter-Based uncertainty and cryptocurrency returns," Research in International Business and Finance, Elsevier, vol. 59(C).
    8. Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Kearney, Colm & Liu, Sha, 2014. "Textual sentiment in finance: A survey of methods and models," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 171-185.
    11. Liu, Mingxi & Li, Guowen & Li, Jianping & Zhu, Xiaoqian & Yao, Yinhong, 2021. "Forecasting the price of Bitcoin using deep learning," Finance Research Letters, Elsevier, vol. 40(C).
    12. Akhtaruzzaman, Md & Boubaker, Sabri & Nguyen, Duc Khuong & Rahman, Molla Ramizur, 2022. "Systemic risk-sharing framework of cryptocurrencies in the COVID–19 crisis," Finance Research Letters, Elsevier, vol. 47(PB).
    13. Bouri, Elie & Shahzad, Syed Jawad Hussain & Roubaud, David, 2019. "Co-explosivity in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 29(C), pages 178-183.
    14. Guégan, Dominique & Renault, Thomas, 2021. "Does investor sentiment on social media provide robust information for Bitcoin returns predictability?," Finance Research Letters, Elsevier, vol. 38(C).
    15. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    16. R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
    17. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    18. Ziyang Ji & Victor Chang & Hao Lan & Ching-Hsien Robert Hsu & Raul Valverde, 2020. "Empirical Research on the Fama-French Three-Factor Model and a Sentiment-Related Four-Factor Model in the Chinese Blockchain Industry," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    19. López-Cabarcos, M. Ángeles & Pérez-Pico, Ada M. & Piñeiro-Chousa, Juan & Šević, Aleksandar, 2021. "Bitcoin volatility, stock market and investor sentiment. Are they connected?," Finance Research Letters, Elsevier, vol. 38(C).
    20. repec:men:wpaper:58_2015 is not listed on IDEAS
    21. Rognone, Lavinia & Hyde, Stuart & Zhang, S. Sarah, 2020. "News sentiment in the cryptocurrency market: An empirical comparison with Forex," International Review of Financial Analysis, Elsevier, vol. 69(C).
    22. Li, Yue & Goodell, John W. & Shen, Dehua, 2021. "Comparing search-engine and social-media attentions in finance research: Evidence from cryptocurrencies," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 723-746.
    23. Jia, Boxiang & Goodell, John W. & Shen, Dehua, 2022. "Momentum or reversal: Which is the appropriate third factor for cryptocurrencies?," Finance Research Letters, Elsevier, vol. 45(C).
    24. Adam S. Hayes, 2019. "Bitcoin price and its marginal cost of production: support for a fundamental value," Applied Economics Letters, Taylor & Francis Journals, vol. 26(7), pages 554-560, April.
    25. Vytautas Karalevicius & Niels Degrande & Jochen De Weerdt, 2018. "Using sentiment analysis to predict interday Bitcoin price movements," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(1), pages 56-75, December.
    26. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    27. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
    28. Goodell, John W. & Goutte, Stephane, 2021. "Diversifying equity with cryptocurrencies during COVID-19," International Review of Financial Analysis, Elsevier, vol. 76(C).
    29. Huang, Yingying & Duan, Kun & Mishra, Tapas, 2021. "Is Bitcoin really more than a diversifier? A pre- and post-COVID-19 analysis," Finance Research Letters, Elsevier, vol. 43(C).
    30. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    31. Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
    32. Conghui Chen & Lanlan Liu & Ningru Zhao, 2020. "Fear Sentiment, Uncertainty, and Bitcoin Price Dynamics: The Case of COVID-19," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2298-2309, August.
    33. Jin, Jingyu & Yu, Jiang & Hu, Yang & Shang, Yue, 2019. "Which one is more informative in determining price movements of hedging assets? Evidence from Bitcoin, gold and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    34. Liebi, Luca J., 2022. "Is there a value premium in cryptoasset markets?," Economic Modelling, Elsevier, vol. 109(C).
    35. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    36. Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
    37. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean Michel & Guesmi, Khaled, 2021. "Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    38. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    39. Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    2. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    3. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean Michel & Guesmi, Khaled, 2021. "Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    4. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean-Michel & Schweizer, Denis, 2023. "Interactions between investors’ fear and greed sentiment and Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    5. Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).
    6. Li, Xiao & Wu, Ruoxi & Wang, Chen, 2024. "Impacts of bitcoin on monetary system: Is China's bitcoin ban necessary?," Research in International Business and Finance, Elsevier, vol. 69(C).
    7. repec:eme:jalpps:jal-02-2023-0023 is not listed on IDEAS
    8. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    9. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
    10. Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    11. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    12. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    13. A. V. Biju & Aparna Merin Mathew & P. P. Nithi Krishna & M. P. Akhil, 2022. "Is the future of bitcoin safe? A triangulation approach in the reality of BTC market through a sentiments analysis," Digital Finance, Springer, vol. 4(4), pages 275-290, December.
    14. Bourghelle, David & Jawadi, Fredj & Rozin, Philippe, 2022. "Do collective emotions drive bitcoin volatility? A triple regime-switching vector approach," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 294-306.
    15. Mokni, Khaled & Bouteska, Ahmed & Nakhli, Mohamed Sahbi, 2022. "Investor sentiment and Bitcoin relationship: A quantile-based analysis," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    16. Hashem A. AlNemer & Besma Hkiri & Muhammed Asif Khan, 2021. "Time-Varying Nexus between Investor Sentiment and Cryptocurrency Market: New Insights from a Wavelet Coherence Framework," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    17. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    18. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    19. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
    20. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    21. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.