IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i5d10.1007_s10614-023-10380-9.html
   My bibliography  Save this article

OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market

Author

Listed:
  • Surinder Singh Khurana

    (Central University of Punjab)

  • Parvinder Singh

    (Central University of Punjab)

  • Naresh Kumar Garg

    (Maharaja Ranjit Singh Punjab Technical University)

Abstract

Cryptocurrencies have emerged as a good tool for investment/trading in the last decade. The investors have achieved promising gains with the long-term investments made at reasonably good price/time. However, investment in cryptocurrencies is also exposed to extremely high volatility. Due to this, the investment may suffer from a high drawdown as the price may fall. In this work, we proposed optimized Greedy-cost averaging based trading (OG-CAT) a novel trading framework as an alternative to long-term investment in cryptocurrencies. The approach exploits the wavy structure of the price movement of cryptocurrencies, the high volatility of price, and the concept of cost averaging. Furthermore, the parameters of the approach are optimized with the simulated annealing algorithm. The approach is evaluated on the two prominent cryptocurrencies: bitcoin and ethereum. During the evaluation, OG-CAT not only outperformed the buy-and-hold investment approach in terms of profit but also demonstrated a lower drawdown. The profit percentage in the case of trading BTC with OG-CAT is 1.63 times more and the max drawdown is 1.62 times less than compared to the buy-and-hold strategy.

Suggested Citation

  • Surinder Singh Khurana & Parvinder Singh & Naresh Kumar Garg, 2024. "OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1735-1756, May.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10380-9
    DOI: 10.1007/s10614-023-10380-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10380-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10380-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    2. Michael Brennan & Feifei Li & Walter Torous, 2005. "Dollar Cost Averaging," Review of Finance, Springer, vol. 9(4), pages 509-535, December.
    3. Jin-Bom Han & Sun-Hak Kim & Myong-Hun Jang & Kum-Sun Ri, 2020. "Using Genetic Algorithm and NARX Neural Network to Forecast Daily Bitcoin Price," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 337-353, August.
    4. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    5. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    6. Michael J. Brennan & Feifei Li & Walter N. Torous, 2005. "Dollar Cost Averaging," Review of Finance, European Finance Association, vol. 9(4), pages 509-535.
    7. R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
    8. Vasu Kalariya & Pushpendra Parmar & Patel Jay & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba & Bogdan-Constantin Neagu, 2022. "Stochastic Neural Networks-Based Algorithmic Trading for the Cryptocurrency Market," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    9. Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
    10. Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    2. Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
    3. Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    5. repec:diw:diwwpp:dp1376 is not listed on IDEAS
    6. repec:diw:diwwpp:dp1324 is not listed on IDEAS
    7. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    8. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    9. Dieci, Roberto & Schmitt, Noemi & Westerhoff, Frank, 2018. "Interactions between stock, bond and housing markets," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 43-70.
    10. Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    11. Zi Ye & Yinxu Wu & Hui Chen & Yi Pan & Qingshan Jiang, 2022. "A Stacking Ensemble Deep Learning Model for Bitcoin Price Prediction Using Twitter Comments on Bitcoin," Mathematics, MDPI, vol. 10(8), pages 1-21, April.
    12. Sofiane Aboura, 2022. "A note on the Bitcoin and Fed Funds rate," Empirical Economics, Springer, vol. 63(5), pages 2577-2603, November.
    13. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    14. Peter Heinrich & Gerhard Schwabe, 2018. "Facilitating Informed Decision-Making in Financial Service Encounters," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(4), pages 317-329, August.
    15. Mingers, John & Parker, Kim T., 2010. "Should you stop investing in a sinking fund when it is sinking?," European Journal of Operational Research, Elsevier, vol. 207(1), pages 508-513, November.
    16. Gil Cohen, 2022. "Algorithmic Trading and Financial Forecasting Using Advanced Artificial Intelligence Methodologies," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
    17. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    18. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    19. Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    20. Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    21. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    22. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10380-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.