IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v14y2017i4d10.1007_s10287-017-0283-8.html
   My bibliography  Save this article

Implied volatility and state price density estimation: arbitrage analysis

Author

Listed:
  • Miloš Kopa

    (Charles University)

  • Sebastiano Vitali

    (Charles University)

  • Tomáš Tichý

    (VŠB-Technical University Ostrava)

  • Radek Hendrych

    (Charles University)

Abstract

This paper deals with implied volatility (IV) estimation using no-arbitrage techniques. The current market practice is to obtain IV of liquid options as based on Black–Scholes (BS type hereafter) models. Such volatility is subsequently used to price illiquid or even exotic options. Therefore, it follows that the BS model can be related simultaneously to the whole set of IVs as given by maturity/moneyness relation of tradable options. Then, it is possible to get IV curve or surface (a so called smile or smirk). Since the moneyness and maturity of IV often do not match the data of valuated options, some sort of estimating and local smoothing is necessary. However, it can lead to arbitrage opportunity if no-arbitrage conditions on state price density (SPD) are ignored. In this paper, using option data on DAX index, we aim to analyse the behavior of IV and SPD with respect to different choices of bandwidth parameter h, time to maturity and kernel function. A set of bandwidths which violates no-arbitrage conditions is identified. We document that the change of h implies interesting changes in the violation interval of moneyness. We also perform the analysis after removing outliers, in order to show that not only outliers cause the violation of no-arbitrage conditions. Moreover, we propose a new measure of arbitrage which can be considered either for the SPD curve (arbitrage area measure) or for the SPD surface (arbitrage volume measure). We highlight the impact of h on the proposed measures considering the options on a German stock index. Finally, we propose an extension of the IV and SPD estimation for the case of options on a dividend-paying stock.

Suggested Citation

  • Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
  • Handle: RePEc:spr:comgts:v:14:y:2017:i:4:d:10.1007_s10287-017-0283-8
    DOI: 10.1007/s10287-017-0283-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-017-0283-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-017-0283-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    3. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Kim, Namhyoung & Lee, Jaewook, 2013. "No-arbitrage implied volatility functions: Empirical evidence from KOSPI 200 index options," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 36-53.
    6. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    7. M. Benko & M. Fengler & W. Härdle & M. Kopa, 2007. "On extracting information implied in options," Computational Statistics, Springer, vol. 22(4), pages 543-553, December.
    8. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    9. Marco Avellaneda & Craig Friedman & Richard Holmes & Dominick Samperi, 1997. "Calibrating volatility surfaces via relative-entropy minimization," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 37-64.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    12. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
    13. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zdeněk Drábek & Miloš Kopa & Matúš Maciak & Michal Pešta & Sebastiano Vitali, 2023. "Investment disputes and their explicit role in option market uncertainty and overall risk instability," Computational Management Science, Springer, vol. 20(1), pages 1-25, December.
    2. Matúš Maciak & Sebastiano Vitali, 2024. "Using interpolated implied volatility for analysing exogenous market changes," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    3. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    4. Connor J.A. Stuart & Sebastian A. Gehricke & Jin E. Zhang & Xinfeng Ruan, 2021. "Implied volatility smirk in the Australian dollar market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4573-4599, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    2. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    3. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    4. Matúš Maciak & Sebastiano Vitali, 2024. "Using interpolated implied volatility for analysing exogenous market changes," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    5. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    6. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    7. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    8. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    9. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
    10. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Bender Christian & Thiel Matthias, 2020. "Arbitrage-free interpolation of call option prices," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 55-78, January.
    12. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    13. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    14. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    15. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    16. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    17. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    18. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    20. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    21. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:14:y:2017:i:4:d:10.1007_s10287-017-0283-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.