IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.06551.html
   My bibliography  Save this paper

Robust financial calibration: a Bayesian approach for neural SDEs

Author

Listed:
  • Christa Cuchiero
  • Eva Flonner
  • Kevin Kurt

Abstract

The paper presents a Bayesian framework for the calibration of financial models using neural stochastic differential equations (neural SDEs). The method is based on the specification of a prior distribution on the neural network weights and an adequately chosen likelihood function. The resulting posterior distribution can be seen as a mixture of different classical neural SDE models yielding robust bounds on the implied volatility surface. Both, historical financial time series data and option price data are taken into consideration, which necessitates a methodology to learn the change of measure between the risk-neutral and the historical measure. The key ingredient for a robust numerical optimization of the neural networks is to apply a Langevin-type algorithm, commonly used in the Bayesian approaches to draw posterior samples.

Suggested Citation

  • Christa Cuchiero & Eva Flonner & Kevin Kurt, 2024. "Robust financial calibration: a Bayesian approach for neural SDEs," Papers 2409.06551, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2409.06551
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.06551
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    2. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    3. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    4. Marc Chataigner & Stéphane Crépey & Matthew Dixon, 2020. "Deep Local Volatility," Post-Print hal-03910122, HAL.
    5. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    6. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    7. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Martin Tegner & Stephen Roberts, 2021. "A Bayesian take on option pricing with Gaussian processes," Papers 2112.03718, arXiv.org.
    10. Imanol Perez Arribas & Cristopher Salvi & Lukasz Szpruch, 2020. "Sig-SDEs model for quantitative finance," Papers 2006.00218, arXiv.org, revised Jun 2020.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    12. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    13. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2025.
    14. Marc Chataigner & St'ephane Cr'epey & Matthew Dixon, 2020. "Deep Local Volatility," Papers 2007.10462, arXiv.org.
    15. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    2. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2025.
    3. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    4. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    5. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    6. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    7. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795, arXiv.org.
    8. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    9. Marc Chataigner & Areski Cousin & St'ephane Cr'epey & Matthew Dixon & Djibril Gueye, 2022. "Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints," Papers 2212.09957, arXiv.org.
    10. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    11. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    12. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    13. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    14. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    15. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    16. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    17. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    18. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    19. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    20. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.06551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.