IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.04876.html
   My bibliography  Save this paper

Interacting Treatments with Endogenous Takeup

Author

Listed:
  • Mate Kormos
  • Robert P. Lieli
  • Martin Huber

Abstract

We study causal inference in randomized experiments (or quasi-experiments) following a $2\times 2$ factorial design. There are two treatments, denoted $A$ and $B$, and units are randomly assigned to one of four categories: treatment $A$ alone, treatment $B$ alone, joint treatment, or none. Allowing for endogenous non-compliance with the two binary instruments representing the intended assignment, as well as unrestricted interference across the two treatments, we derive the causal interpretation of various instrumental variable estimands under more general compliance conditions than in the literature. In general, if treatment takeup is driven by both instruments for some units, it becomes difficult to separate treatment interaction from treatment effect heterogeneity. We provide auxiliary conditions and various bounding strategies that may help zero in on causally interesting parameters. As an empirical illustration, we apply our results to a program randomly offering two different treatments, namely tutoring and financial incentives, to first year college students, in order to assess the treatments' effects on academic performance.

Suggested Citation

  • Mate Kormos & Robert P. Lieli & Martin Huber, 2023. "Interacting Treatments with Endogenous Takeup," Papers 2301.04876, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2301.04876
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.04876
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    2. Marc Ferracci & Gr�gory Jolivet & Gerard J. van den Berg, 2014. "Evidence of Treatment Spillovers Within Markets," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 812-823, December.
    3. Philip Oreopoulos & Daniel Lang & Joshua Angrist, 2009. "Incentives and Services for College Achievement: Evidence from a Randomized Trial," American Economic Journal: Applied Economics, American Economic Association, vol. 1(1), pages 136-163, January.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. Kosuke Imai & Zhichao Jiang & Anup Malani, 2021. "Causal Inference With Interference and Noncompliance in Two-Stage Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 632-644, April.
    7. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    8. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    9. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    10. Martin Huber & Andreas Steinmayr, 2021. "A Framework for Separating Individual-Level Treatment Effects From Spillover Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 422-436, March.
    11. Matthew Blackwell, 2017. "Instrumental Variable Methods for Conditional Effects and Causal Interaction in Voter Mobilization Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 590-599, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    2. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    3. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    4. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    5. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    6. Ellis, Jimmy R. & Gershenson, Seth, 2016. "LATE for the Meeting: Gender, Peer Advising, and College Success," IZA Discussion Papers 9956, Institute of Labor Economics (IZA).
    7. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    8. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    9. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    10. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    11. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    12. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    13. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    14. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    15. Paloyo, Alfredo R. & Rogan, Sally & Siminski, Peter, 2016. "The effect of supplemental instruction on academic performance: An encouragement design experiment," Economics of Education Review, Elsevier, vol. 55(C), pages 57-69.
    16. Didier Nibbering & Matthijs Oosterveen, 2023. "Instrument-based estimation of full treatment effects with movers," Papers 2306.07018, arXiv.org.
    17. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    18. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    19. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    20. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.04876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.