IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.14444.html
   My bibliography  Save this paper

Empirical Bayes When Estimation Precision Predicts Parameters

Author

Listed:
  • Jiafeng Chen

Abstract

Gaussian empirical Bayes methods usually maintain a precision independence assumption: The unknown parameters of interest are independent from the known standard errors of the estimates. This assumption is often theoretically questionable and empirically rejected. This paper proposes to model the conditional distribution of the parameter given the standard errors as a flexibly parametrized location-scale family of distributions, leading to a family of methods that we call CLOSE. The CLOSE framework unifies and generalizes several proposals under precision dependence. We argue that the most flexible member of the CLOSE family is a minimalist and computationally efficient default for accounting for precision dependence. We analyze this method and show that it is competitive in terms of the regret of subsequent decisions rules. Empirically, using CLOSE leads to sizable gains for selecting high-mobility Census tracts.

Suggested Citation

  • Jiafeng Chen, 2022. "Empirical Bayes When Estimation Precision Predicts Parameters," Papers 2212.14444, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2212.14444
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.14444
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianchao Xie & S. C. Kou & Lawrence D. Brown, 2012. "SURE Estimates for a Heteroscedastic Hierarchical Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1465-1479, December.
    2. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    3. Roger Koenker & Ivan Mizera, 2014. "Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 674-685, June.
    4. Asaf Weinstein & Zhuang Ma & Lawrence D. Brown & Cun-Hui Zhang, 2018. "Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 698-710, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonhomme, Stéphane & Denis, Angela, 2024. "Estimating heterogeneous effects: Applications to labor economics," Labour Economics, Elsevier, vol. 91(C).
    2. Michele Battisti & Valentino Dardanoni & Stefano Demichelis, 2024. "Inter-firm Heterogeneity in Production," Papers 2411.15980, arXiv.org.
    3. Jiafeng Chen, 2023. "On the robustness of posterior means," Papers 2303.08653, arXiv.org, revised Dec 2024.
    4. Bonhomme, Stéphane & Denis, Angela, 2024. "Estimating heterogeneous effects: Applications to labor economics," Labour Economics, Elsevier, vol. 91(C).
    5. Andreas Petrou-Zeniou & Azeem M. Shaikh, 2024. "Inference on Multiple Winners with Applications to Microcredit and Economic Mobility," Papers 2410.19212, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    2. Feng, Long & Dicker, Lee H., 2018. "Approximate nonparametric maximum likelihood for mixture models: A convex optimization approach to fitting arbitrary multivariate mixing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 80-91.
    3. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.
    4. Park, Junyong, 2018. "Simultaneous estimation based on empirical likelihood and general maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 19-31.
    5. Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    7. Li Tan & Cory Koedel, 2019. "The Effects of Differential Income Replacement and Mortality on U.S. Social Security Redistribution," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 613-637, October.
    8. Roger Koenker, 2017. "Bayesian deconvolution: an R vinaigrette," CeMMAP working papers 38/17, Institute for Fiscal Studies.
    9. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    10. Michael Gilraine & Jiaying Gu & Robert McMillan, 2021. "A Nonparametric Method for Estimating Teacher Value-Added," Working Papers tecipa-689, University of Toronto, Department of Economics.
    11. Jiaying Gu & Roger Koenker, 2018. "Nonparametric maximum likelihood methods for binary response models with random coefficients," Papers 1811.03329, arXiv.org, revised Jan 2020.
    12. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Jiaying Gu & Roger Koenker, 2014. "Unobserved heterogeneity in income dynamics: an empirical Bayes perspective," CeMMAP working papers 43/14, Institute for Fiscal Studies.
    14. Sihai Dave Zhao, 2017. "Integrative genetic risk prediction using non-parametric empirical Bayes classification," Biometrics, The International Biometric Society, vol. 73(2), pages 582-592, June.
    15. Roger Koenker, 2017. "Bayesian deconvolution: an R vinaigrette," CeMMAP working papers CWP38/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers 37/17, Institute for Fiscal Studies.
    17. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    18. Li, Xiaoou & Chen, Yunxiao & Chen, Xi & Liu, Jingchen & Ying, Zhiliang, 2021. "Optimal stopping and worker selection in crowdsourcing: an adaptive sequential probability ratio test framework," LSE Research Online Documents on Economics 100873, London School of Economics and Political Science, LSE Library.
    19. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers CWP37/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers 39/17, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.14444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.