IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i522p698-710.html
   My bibliography  Save this article

Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean

Author

Listed:
  • Asaf Weinstein
  • Zhuang Ma
  • Lawrence D. Brown
  • Cun-Hui Zhang

Abstract

The problem of estimating the mean of a normal vector with known but unequal variances introduces substantial difficulties that impair the adequacy of traditional empirical Bayes estimators. By taking a different approach that treats the known variances as part of the random observations, we restore symmetry and thus the effectiveness of such methods. We suggest a group-linear empirical Bayes estimator, which collects observations with similar variances and applies a spherically symmetric estimator to each group separately. The proposed estimator is motivated by a new oracle rule which is stronger than the best linear rule, and thus provides a more ambitious benchmark than that considered in the previous literature. Our estimator asymptotically achieves the new oracle risk (under appropriate conditions) and at the same time is minimax. The group-linear estimator is particularly advantageous in situations where the true means and observed variances are empirically dependent. To demonstrate the merits of the proposed methods in real applications, we analyze the baseball data used by Brown (2008), where the group-linear methods achieved the prediction error of the best nonparametric estimates that have been applied to the dataset, and significantly lower error than other parametric and semiparametric empirical Bayes estimators.

Suggested Citation

  • Asaf Weinstein & Zhuang Ma & Lawrence D. Brown & Cun-Hui Zhang, 2018. "Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 698-710, April.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:698-710
    DOI: 10.1080/01621459.2017.1280406
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1280406
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1280406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    2. Jiafeng Chen, 2022. "Empirical Bayes When Estimation Precision Predicts Parameters," Papers 2212.14444, arXiv.org, revised Apr 2024.
    3. Vladislav Morozov, 2022. "Inference on Extreme Quantiles of Unobserved Individual Heterogeneity," Papers 2210.08524, arXiv.org, revised Jun 2023.
    4. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2022. "Satisficing credibility for heterogeneous risks," European Journal of Operational Research, Elsevier, vol. 298(2), pages 752-768.
    5. Sinha, Shyamalendu & Hart, Jeffrey D., 2019. "Estimating the mean and variance of a high-dimensional normal distribution using a mixture prior," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 201-221.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:698-710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.