IDEAS home Printed from https://ideas.repec.org/p/tor/tecipa/tecipa-689.html
   My bibliography  Save this paper

A Nonparametric Method for Estimating Teacher Value-Added

Author

Listed:
  • Michael Gilraine
  • Jiaying Gu
  • Robert McMillan

Abstract

This paper proposes a computationally feasible nonparametric methodology for estimating teacher value-added. Our estimator, drawing on Robbins (1956), permits the unobserved teacher value-added distribution to be estimated directly, rather than assuming normality as is standard. Simulations indicate the estimator performs very well regardless of the true distribution, even in moderately-sized samples. Implementing our method in practice using two large-scale administrative datasets, the estimated teacher value-added distributions depart from normality and differ from each other. Further, compared with widely-used parametric estimates, we show our nonparametric estimates can make a significant difference to teacher-related policy calculations, in both short and longer terms.

Suggested Citation

  • Michael Gilraine & Jiaying Gu & Robert McMillan, 2021. "A Nonparametric Method for Estimating Teacher Value-Added," Working Papers tecipa-689, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-689
    as

    Download full text from publisher

    File URL: https://www.economics.utoronto.ca/public/workingPapers/tecipa-689.pdf
    File Function: Main Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Editors, 2016. "16 and all that," Stata Journal, StataCorp LP, vol. 16(1), pages 3-4, March.
    3. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    4. Amitabh Chandra & Amy Finkelstein & Adam Sacarny & Chad Syverson, 2016. "Health Care Exceptionalism? Performance and Allocation in the US Health Care Sector," American Economic Review, American Economic Association, vol. 106(8), pages 2110-2144, August.
    5. Kane, Thomas J. & Rockoff, Jonah E. & Staiger, Douglas O., 2008. "What does certification tell us about teacher effectiveness? Evidence from New York City," Economics of Education Review, Elsevier, vol. 27(6), pages 615-631, December.
    6. Roger Koenker & Ivan Mizera, 2014. "Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 674-685, June.
    7. Alberto Abadie & Maximilian Kasy, 2019. "Choosing Among Regularized Estimators in Empirical Economics: The Risk of Machine Learning," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 743-762, December.
    8. Jonah E. Rockoff, 2004. "The Impact of Individual Teachers on Student Achievement: Evidence from Panel Data," American Economic Review, American Economic Association, vol. 94(2), pages 247-252, May.
    9. Cassandra M. Guarino & Michelle Maxfield & Mark D. Reckase & Paul N. Thompson & Jeffrey M. Wooldridge, 2015. "An Evaluation of Empirical Bayes’s Estimation of Value-Added Teacher Performance Measures," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 190-222, April.
    10. Brian A. Jacob & Lars Lefgren, 2008. "Can Principals Identify Effective Teachers? Evidence on Subjective Performance Evaluation in Education," Journal of Labor Economics, University of Chicago Press, vol. 26(1), pages 101-136.
    11. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    12. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    13. Lee H. Dicker & Sihai D. Zhao, 2016. "High-dimensional classification via nonparametric empirical Bayes and maximum likelihood inference," Biometrika, Biometrika Trust, vol. 103(1), pages 21-34.
    14. Marianne Bitler & Sean Corcoran & Thurston Domina & Emily Penner, 2019. "Teacher Effects on Student Achievement and Height: A Cautionary Tale," NBER Working Papers 26480, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Gilraine & Jiaying Gu & Robert McMillan, 2020. "A New Method for Estimating Teacher Value-Added," NBER Working Papers 27094, National Bureau of Economic Research, Inc.
    2. Mike Gilraine & Jiaying Gu & Robert McMillan, 2022. "A Nonparametric Approach for Studying Teacher Impacts," Working Papers tecipa-716, University of Toronto, Department of Economics.
    3. Ingo E. Isphording & Ulf Zölitz, 2020. "The value of a peer," ECON - Working Papers 342, Department of Economics - University of Zurich.
    4. Nirav Mehta, 2019. "Measuring quality for use in incentive schemes: The case of “shrinkage” estimators," Quantitative Economics, Econometric Society, vol. 10(4), pages 1537-1577, November.
    5. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    6. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.
    7. Araujo P., Maria Daniela & Quis, Johanna Sophie, 2021. "Parents can tell! Evidence on classroom quality differences in German primary schools," BERG Working Paper Series 172, Bamberg University, Bamberg Economic Research Group.
    8. Araujo P., María Daniela & Quis, Johanna Sophie, 2021. "Teacher Effects in Germany: Evidence from Elementary School," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242457, Verein für Socialpolitik / German Economic Association.
    9. Matthew A. Kraft & John P. Papay & Olivia L. Chi, 2020. "Teacher Skill Development: Evidence from Performance Ratings by Principals," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 315-347, March.
    10. Allison Atteberry & Susanna Loeb & James Wyckoff, 2013. "Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness," NBER Working Papers 19096, National Bureau of Economic Research, Inc.
    11. Goldhaber, Dan & Krieg, John & Theobald, Roddy, 2020. "Effective like me? Does having a more productive mentor improve the productivity of mentees?," Labour Economics, Elsevier, vol. 63(C).
    12. Hanushek, Eric A., 2011. "The economic value of higher teacher quality," Economics of Education Review, Elsevier, vol. 30(3), pages 466-479, June.
    13. Bruhn, Jesse & Imberman, Scott & Winters, Marcus, 2022. "Regulatory arbitrage in teacher hiring and retention: Evidence from Massachusetts Charter Schools," Journal of Public Economics, Elsevier, vol. 215(C).
    14. Rockoff, Jonah E. & Speroni, Cecilia, 2011. "Subjective and objective evaluations of teacher effectiveness: Evidence from New York City," Labour Economics, Elsevier, vol. 18(5), pages 687-696, October.
    15. Naven, Matthew, 2019. "Human-Capital Formation During Childhood and Adolescence: Evidence from School Quality and Postsecondary Success in California," MPRA Paper 97716, University Library of Munich, Germany.
    16. Dan Goldhaber & Michael Hansen, 2013. "Is it Just a Bad Class? Assessing the Long-term Stability of Estimated Teacher Performance," Economica, London School of Economics and Political Science, vol. 80(319), pages 589-612, July.
    17. Eric Parsons & Cory Koedel & Li Tan, 2019. "Accounting for Student Disadvantage in Value-Added Models," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 144-179, April.
    18. Pau Balart & Antonio Cabrales, 2015. "La evaluación docente basada en el resultado como vía de mejora del sistema educativo," Studies on the Spanish Economy eee2015-13, FEDEA.
    19. Soonwoo Kwon, 2023. "Optimal Shrinkage Estimation of Fixed Effects in Linear Panel Data Models," Papers 2308.12485, arXiv.org, revised Oct 2023.
    20. Peter Z. Schochet & Hanley S. Chiang, 2013. "What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 142-171, April.

    More about this item

    Keywords

    Teacher Value-Added; Nonparametric Empirical Bayes; Education Policy; Teacher Release Policy;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • H75 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Government: Health, Education, and Welfare
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePEc Maintainer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.