SURE Estimates for a Heteroscedastic Hierarchical Model
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2012.728154
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng, Long & Dicker, Lee H., 2018. "Approximate nonparametric maximum likelihood for mixture models: A convex optimization approach to fitting arbitrary multivariate mixing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 80-91.
- Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.
- Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022.
"Robust Empirical Bayes Confidence Intervals,"
Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
- Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg-Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Working Papers 2022-27, Princeton University. Economics Department..
- Jochmans, Koen & Weidner, Martin, 2024.
"Inference On A Distribution From Noisy Draws,"
Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
- Koen Jochmans & Martin Weidner, 2018. "Inference on a Distribution from Noisy Draws," Papers 1803.04991, arXiv.org, revised Dec 2021.
- Jochmans, Koen & Weidner, Martin, 2021. "Inference On A Distribution From Noisy Draws," TSE Working Papers 21-1275, Toulouse School of Economics (TSE).
- Koen Jochmans & Martin Weidner, 2021. "Inference on a distribution from noisy draws," CeMMAP working papers CWP42/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Koen Jochmans & Martin Weidner, 2019. "Inference on a distribution from noisy draws," CeMMAP working papers CWP44/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jochmans, K. & Weidner, M., 2019. "Inference on a distribution from noisy draws," Cambridge Working Papers in Economics 1946, Faculty of Economics, University of Cambridge.
- Koen Jochmans & Martin Weidner, 2018. "Inference on a distribution from noisy draws," CeMMAP working papers CWP14/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Koen Jochmans & Martin Weidner, 2022. "Inference on a distribution from noisy draws," Post-Print hal-04315813, HAL.
- Sinha, Shyamalendu & Hart, Jeffrey D., 2019. "Estimating the mean and variance of a high-dimensional normal distribution using a mixture prior," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 201-221.
- Kong, Xinbing & Liu, Zhi & Zhao, Peng & Zhou, Wang, 2017. "SURE estimates under dependence and heteroscedasticity," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 1-11.
- Ghoreishi, S.K. & Meshkani, M.R., 2014. "On SURE estimates in hierarchical models assuming heteroscedasticity for both levels of a two-level normal hierarchical model," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 129-137.
- Vishal Gupta & Paat Rusmevichientong, 2021. "Small-Data, Large-Scale Linear Optimization with Uncertain Objectives," Management Science, INFORMS, vol. 67(1), pages 220-241, January.
- Jiafeng Chen, 2022. "Empirical Bayes When Estimation Precision Predicts Parameters," Papers 2212.14444, arXiv.org, revised Apr 2024.
- Bing-Yi Jing & Zhouping Li & Guangming Pan & Wang Zhou, 2016. "On SURE-Type Double Shrinkage Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1696-1704, October.
- Park, Junyong, 2018. "Simultaneous estimation based on empirical likelihood and general maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 19-31.
- Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020.
"Robust Empirical Bayes Confidence Intervals,"
Papers
2004.03448, arXiv.org, revised May 2022.
- Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg-Møller, 2021. "Robust Empirical Bayes Confidence Intervals," Working Papers 2021-19, Princeton University. Economics Department..
- Pirmin Fessler & Maximilian Kasy, 2019. "How to Use Economic Theory to Improve Estimators: Shrinking Toward Theoretical Restrictions," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 681-698, October.
- Andrew Y. Chen & Mihail Velikov, 2020. "Zeroing in on the Expected Returns of Anomalies," Finance and Economics Discussion Series 2020-039, Board of Governors of the Federal Reserve System (U.S.).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1465-1479. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.