IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/38-17.html
   My bibliography  Save this paper

Bayesian deconvolution: an R vinaigrette

Author

Listed:
  • Roger Koenker

    (Institute for Fiscal Studies and UCL)

Abstract

Nonparametric maximum likelihood estimation of general mixture models pioneered by the work of Kiefer and Wolfowitz (1956) has been recently reformulated as an exponential family regression spline problem in Efron (2016). Both approaches yield a low dimensional estimate of the mixing distribution, g-modeling in the terminology of Efron. Some casual empiricism suggests that the Efron approach is preferable when the mixing distribution has a smooth density, while Kiefer-Wolfowitz is preferable for discrete mixing settings. In the classical Gaussian deconvolution problem both maximum likelihood methods appear to be preferable to (Fourier) kernel methods. Kernel smoothing of the Kiefer-Wolfowitz estimator appears to be competitive with the Efron procedure for smooth alternatives.

Suggested Citation

  • Roger Koenker, 2017. "Bayesian deconvolution: an R vinaigrette," CeMMAP working papers CWP38/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:38/17
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP381717.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bradley Efron, 2016. "Empirical Bayes deconvolution estimates," Biometrika, Biometrika Trust, vol. 103(1), pages 1-20.
    2. Roger Koenker & Ivan Mizera, 2014. "Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 674-685, June.
    3. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Koenker, 2017. "Bayesian deconvolution: an R vinaigrette," CeMMAP working papers 38/17, Institute for Fiscal Studies.
    2. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    3. Roger Koenker & Jiaying Gu, 2019. "Minimalist G-modelling: A comment on Efron," CeMMAP working papers CWP13/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    6. Feng, Long & Dicker, Lee H., 2018. "Approximate nonparametric maximum likelihood for mixture models: A convex optimization approach to fitting arbitrary multivariate mixing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 80-91.
    7. Jiafeng Chen, 2022. "Empirical Bayes When Estimation Precision Predicts Parameters," Papers 2212.14444, arXiv.org, revised Apr 2024.
    8. Li Tan & Cory Koedel, 2019. "The Effects of Differential Income Replacement and Mortality on U.S. Social Security Redistribution," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 613-637, October.
    9. Michael Gilraine & Jiaying Gu & Robert McMillan, 2021. "A Nonparametric Method for Estimating Teacher Value-Added," Working Papers tecipa-689, University of Toronto, Department of Economics.
    10. Jiaying Gu & Roger Koenker, 2018. "Nonparametric maximum likelihood methods for binary response models with random coefficients," Papers 1811.03329, arXiv.org, revised Jan 2020.
    11. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Jiaying Gu & Roger Koenker, 2014. "Unobserved heterogeneity in income dynamics: an empirical Bayes perspective," CeMMAP working papers 43/14, Institute for Fiscal Studies.
    13. Sihai Dave Zhao, 2017. "Integrative genetic risk prediction using non-parametric empirical Bayes classification," Biometrics, The International Biometric Society, vol. 73(2), pages 582-592, June.
    14. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers 37/17, Institute for Fiscal Studies.
    15. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    16. Li, Xiaoou & Chen, Yunxiao & Chen, Xi & Liu, Jingchen & Ying, Zhiliang, 2021. "Optimal stopping and worker selection in crowdsourcing: an adaptive sequential probability ratio test framework," LSE Research Online Documents on Economics 100873, London School of Economics and Political Science, LSE Library.
    17. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers CWP37/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers 39/17, Institute for Fiscal Studies.
    19. Michael Gilraine & Jiaying Gu & Robert McMillan, 2020. "A New Method for Estimating Teacher Value-Added," NBER Working Papers 27094, National Bureau of Economic Research, Inc.
    20. Jiaying Gu & Roger Koenker, 2021. "Ranking and Selection from Pairwise Comparisons: Empirical Bayes Methods for Citation Analysis," Papers 2112.11064, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:38/17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.