IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.06485.html
   My bibliography  Save this paper

Computing XVA for American basket derivatives by Machine Learning techniques

Author

Listed:
  • Ludovic Goudenege
  • Andrea Molent
  • Antonino Zanette

Abstract

Total value adjustment (XVA) is the change in value to be added to the price of a derivative to account for the bilateral default risk and the funding costs. In this paper, we compute such a premium for American basket derivatives whose payoff depends on multiple underlyings. In particular, in our model, those underlying are supposed to follow the multidimensional Black-Scholes stochastic model. In order to determine the XVA, we follow the approach introduced by Burgard and Kjaer \cite{burgard2010pde} and afterward applied by Arregui et al. \cite{arregui2017pde,arregui2019monte} for the one-dimensional American derivatives. The evaluation of the XVA for basket derivatives is particularly challenging as the presence of several underlings leads to a high-dimensional control problem. We tackle such an obstacle by resorting to Gaussian Process Regression, a machine learning technique that allows one to address the curse of dimensionality effectively. Moreover, the use of numerical techniques, such as control variates, turns out to be a powerful tool to improve the accuracy of the proposed methods. The paper includes the results of several numerical experiments that confirm the goodness of the proposed methodologies.

Suggested Citation

  • Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2022. "Computing XVA for American basket derivatives by Machine Learning techniques," Papers 2209.06485, arXiv.org.
  • Handle: RePEc:arx:papers:2209.06485
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.06485
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    2. Salvador, Beatriz & Oosterlee, Cornelis W., 2021. "Corrigendum to ``Total value adjustment for a stochastic volatility model. A comparison with the Black–Scholes model''," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    3. Bernard Lapeyre & Jérôme Lelong, 2021. "Neural network regression for Bermudan option pricing," Post-Print hal-02183587, HAL.
    4. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    5. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    6. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Computing credit valuation adjustment solving coupled PIDEs in the Bates model," Computational Management Science, Springer, vol. 17(2), pages 163-178, June.
    7. Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
    8. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    9. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 573-591, April.
    10. Salvador, Beatriz & Oosterlee, Cornelis W., 2021. "Total value adjustment for a stochastic volatility model. A comparison with the Black–Scholes model," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    11. Jérôme Lelong, 2018. "Dual pricing of American options by Wiener chaos expansion," Post-Print hal-01299819, HAL.
    12. Jian-Huang She & Dan Grecu, 2018. "Neural Network for CVA: Learning Future Values," Papers 1811.08726, arXiv.org.
    13. Cornelis S. L. De Graaf & Qian Feng & Drona Kandhai & Cornelis W. Oosterlee, 2014. "Efficient Computation Of Exposure Profiles For Counterparty Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-23.
    14. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel P. Villarino & 'Alvaro Leitao & Jos'e A. Garc'ia-Rodr'iguez, 2022. "Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk," Papers 2210.02175, arXiv.org.
    2. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    3. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2022. "Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 958-974.
    4. Brini, Alessio & Lenz, Jimmie, 2024. "Pricing cryptocurrency options with machine learning regression for handling market volatility," Economic Modelling, Elsevier, vol. 136(C).
    5. Bianca Reichert & Adriano Mendon a Souza, 2022. "Can the Heston Model Forecast Energy Generation? A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 289-295.
    6. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2021. "Moving average options: Machine Learning and Gauss-Hermite quadrature for a double non-Markovian problem," Papers 2108.11141, arXiv.org.
    7. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    8. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    9. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.
    10. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
    11. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    12. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    13. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    14. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.
    15. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    16. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    17. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Jin Sun & Eckhard Platen, 2019. "Benchmarked Risk Minimizing Hedging Strategies for Life Insurance Policies," Research Paper Series 399, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    20. Constantinos Kardaras & Jan Obłój & Eckhard Platen, 2017. "The Numéraire Property And Long-Term Growth Optimality For Drawdown-Constrained Investments," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 68-95, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.06485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.