IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.11554.html
   My bibliography  Save this paper

CVA in fractional and rough volatility models

Author

Listed:
  • Elisa Al`os
  • Fabio Antonelli
  • Alessandro Ramponi
  • Sergio Scarlatti

Abstract

In this work we present a general representation formula for the price of a vulnerable European option, and the related CVA in stochastic (either rough or not) volatility models for the underlying's price, when admitting correlation with the default event. We specialize it for some volatility models and we provide price approximations, based on the representation formula. We study numerically their accuracy, comparing the results with Monte Carlo simulations, and we run a theoretical study of the error. We also introduce a seminal study of roughness influence on the claim's price.

Suggested Citation

  • Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.
  • Handle: RePEc:arx:papers:2204.11554
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.11554
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    4. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    7. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    8. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    11. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    12. Damiano Brigo & Thomas Hvolby & Frédéric Vrins, 2018. "Wrong-Way Risk Adjusted Exposure: Analytical Approximations for Options in Default Intensity Models," World Scientific Book Chapters, in: Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst (ed.), Innovations in Insurance, Risk- and Asset Management, chapter 2, pages 27-45, World Scientific Publishing Co. Pte. Ltd..
    13. Elisa Alòs & Kenichiro Shiraya, 2019. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," Finance and Stochastics, Springer, vol. 23(2), pages 423-447, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    2. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    3. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    4. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    6. Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2022. "Approximate value adjustments for European claims," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1149-1161.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    9. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    10. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    11. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    12. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    14. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    15. Antoine Jacquier & Fangwei Shi, 2018. "Small-time moderate deviations for the randomised Heston model," Papers 1808.03548, arXiv.org.
    16. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    17. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    18. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    19. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    20. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.11554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.