Moving average options: Machine Learning and Gauss-Hermite quadrature for a double non-Markovian problem
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
- Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
- Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
- Ling Lu & Wei Xu & Zhehui Qian, 2017. "Efficient willow tree method for European-style and American-style moving average barrier options pricing," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 889-906, June.
- Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
- W. Dong & B. Kang, 2021. "Evaluation of gas sales agreements with indexation using tree and least-squares Monte Carlo methods on graphics processing units," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 501-522, March.
- Wei Xu & Zhiwu Hong & Chenxiang Qin, 2013. "A new sampling strategy willow tree method with application to path-dependent option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 861-872, May.
- Chih‐Hao Kao & Yuh‐Dauh Lyuu, 2003. "Pricing of moving‐average‐type options with applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(5), pages 415-440, May.
- Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
- Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 573-591, April.
- Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
- Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
- Xavier Warin, 2012. "Hedging Swing contract on gas markets," Papers 1208.5303, arXiv.org.
- Mesias Alfeus & Christina Sklibosios Nikitopoulos, 2020. "Forecasting Commodity Markets Volatility: HAR or Rough?," Research Paper Series 415, Quantitative Finance Research Centre, University of Technology, Sydney.
- repec:dau:papers:123456789/11984 is not listed on IDEAS
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- Christian Bayer & Raúl Tempone & Sören Wolfers, 2020. "Pricing American options by exercise rate optimization," Quantitative Finance, Taylor & Francis Journals, vol. 20(11), pages 1749-1760, November.
- Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
- Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2022. "Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 958-974.
- Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
- Ling Lu & Wei Xu & Zhehui Qian, 2017. "Efficient willow tree method for European-style and American-style moving average barrier options pricing," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 889-906, June.
- Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
- Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022.
"Short-dated smile under rough volatility: asymptotics and numerics,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2020. "Short dated smile under Rough Volatility: asymptotics and numerics," Papers 2009.08814, arXiv.org, revised Sep 2021.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023.
"Local volatility under rough volatility,"
Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2022. "Local volatility under rough volatility," Papers 2204.02376, arXiv.org, revised Nov 2022.
- Brini, Alessio & Lenz, Jimmie, 2024. "Pricing cryptocurrency options with machine learning regression for handling market volatility," Economic Modelling, Elsevier, vol. 136(C).
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
- Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
- Marie Bernhart & Peter Tankov & Xavier Warin, 2010.
"A finite dimensional approximation for pricing moving average options,"
Papers
1011.3599, arXiv.org.
- Marie Bernhart & Peter Tankov & Xavier Warin, 2010. "A finite dimensional approximation for pricing moving average options," Working Papers hal-00554216, HAL.
- Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
- Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
- Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
- Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
- Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
- Leonardo Kanashiro Felizardo & Elia Matsumoto & Emilio Del-Moral-Hernandez, 2022. "Solving the optimal stopping problem with reinforcement learning: an application in financial option exercise," Papers 2208.00765, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-30 (Big Data)
- NEP-CMP-2021-08-30 (Computational Economics)
- NEP-CWA-2021-08-30 (Central and Western Asia)
- NEP-ISF-2021-08-30 (Islamic Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.11141. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.