IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v96y2001mseptemberp1102-1112.html
   My bibliography  Save this article

A Correlated Probit Model for Joint Modeling of Clustered Binary and Continuous Responses

Author

Listed:
  • Gueorguieva R. V.
  • Agresti A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Gueorguieva R. V. & Agresti A., 2001. "A Correlated Probit Model for Joint Modeling of Clustered Binary and Continuous Responses," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1102-1112, September.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:september:p:1102-1112
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2001/00000096/00000455/art00028
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    2. Martin Spieß, 2006. "Estimation of a Two-Equation Panel Model with Mixed Continuous and Ordered Categorical Outcomes and Missing Data," Discussion Papers 010, Europa-Universität Flensburg, International Institute of Management.
    3. Dang,Hai-Anh H. & King,Elizabeth M. & Dang,Hai-Anh H. & King,Elizabeth M., 2013. "Incentives and teacher effort : further evidence from a developing country," Policy Research Working Paper Series 6694, The World Bank.
    4. Ulf Böckenholt, 2006. "Thurstonian-Based Analyses: Past, Present, and Future Utilities," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 615-629, December.
    5. Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023. "Bivariate distribution regression with application to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
    6. Martin Spieß, 2006. "On the Returns to Occupational Qualification in Terms of Subjective and Objective Variables: A GEE-type Approach to the Estimation of Two-Equation Panel Models," Discussion Papers of DIW Berlin 564, DIW Berlin, German Institute for Economic Research.
    7. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:september:p:1102-1112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.