IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/70-18.html
   My bibliography  Save this paper

Network and panel quantile effects via distribution regression

Author

Listed:
  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Ivan Fernandez-Val

    (Institute for Fiscal Studies and Boston University)

  • Martin Weidner

    (Institute for Fiscal Studies and University College London)

Abstract

This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are bias corrected to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP70/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:70/18
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP701818.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    2. Eaton, Jonathan & Kortum, Samuel, 2001. "Trade in capital goods," European Economic Review, Elsevier, vol. 45(7), pages 1195-1235.
    3. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    4. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    5. repec:hal:spmain:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    6. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    7. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    8. Head, Keith & Mayer, Thierry, 2014. "Gravity Equations: Workhorse,Toolkit, and Cookbook," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 131-195, Elsevier.
    9. James E. Anderson & Eric van Wincoop, 2003. "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review, American Economic Association, vol. 93(1), pages 170-192, March.
    10. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    11. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    12. Kim, Min Seong & Sun, Yixiao, 2016. "BOOTSTRAP AND k-STEP BOOTSTRAP BIAS CORRECTIONS FOR THE FIXED EFFECTS ESTIMATOR IN NONLINEAR PANEL DATA MODELS," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1523-1568, December.
    13. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    14. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    15. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    16. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    17. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers 16/16, Institute for Fiscal Studies.
    18. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    19. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    20. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    21. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    22. Mario Cruz-Gonzalez & Iván Fernández-Val & Martin Weidner, 2017. "Bias corrections for probit and logit models with two-way fixed effects," Stata Journal, StataCorp LP, vol. 17(3), pages 517-545, September.
    23. Graham, Bryan S. & Hahn, Jinyong & Powell, James L., 2009. "The incidental parameter problem in a non-differentiable panel data model," Economics Letters, Elsevier, vol. 105(2), pages 181-182, November.
    24. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    25. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
    26. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    27. Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2015. "Quantile Regression with Panel Data," NBER Working Papers 21034, National Bureau of Economic Research, Inc.
    28. Karyne B. Charbonneau, 2017. "Multiple fixed effects in binary response panel data models," Econometrics Journal, Royal Economic Society, vol. 20(3), pages 1-13, October.
    29. Elhanan Helpman & Marc Melitz & Yona Rubinstein, 2008. "Estimating Trade Flows: Trading Partners and Trading Volumes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(2), pages 441-487.
    30. Harrigan, James, 1994. "Scale Economies and the Volume of Trade," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 321-328, May.
    31. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    32. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    33. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    34. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    35. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2014. "Finite Population Causal Standard Errors," NBER Working Papers 20325, National Bureau of Economic Research, Inc.
    36. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    37. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    38. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    39. Dzemski, Andreas, 2017. "An empirical model of dyadic link formation in a network with unobserved heterogeneity," Working Papers in Economics 698, University of Gothenburg, Department of Economics, revised Apr 2018.
    40. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    41. Antonio F. Galvao & Carlos Lamarche & Luiz Renato Lima, 2013. "Estimation of Censored Quantile Regression for Panel Data With Fixed Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1075-1089, September.
    42. Gao, Wayne Yuan, 2020. "Nonparametric identification in index models of link formation," Journal of Econometrics, Elsevier, vol. 215(2), pages 399-413.
    43. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    2. Alvarado, Rafael & Cuesta, Lizeth & Kumar, Pavan & Rehman, Abdul & Murshed, Muntasir & Işık, Cem & Vega, Nora & Ochoa-Moreno, Santiago & Tillaguango, Brayan, 2022. "Impact of natural resources on economic progress: Evidence for trading blocs in Latin America using non-linear econometric methods," Resources Policy, Elsevier, vol. 79(C).
    3. Neary, Peter & Carrère, Céline & Mrázová, Monika, 2020. "Gravity without Apologies: The Science of Elasticities, Distance, and Trade," CEPR Discussion Papers 14473, C.E.P.R. Discussion Papers.
    4. Céline Carrère & Monika Mrázová & J Peter Neary, 2020. "Gravity Without Apology: the Science of Elasticities, Distance and Trade," The Economic Journal, Royal Economic Society, vol. 130(628), pages 880-910.
    5. Ivan Fernandez-Val & Wayne Yuan Gao & Yuan Liao & Francis Vella, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," Papers 2202.04154, arXiv.org, revised Jan 2023.
    6. Vu, Dung Anh & Van Nguyen, Thinh & Nhu, Quang Minh & Tran, Tuyen Quang, 2024. "Does increased digital transformation promote a firm's financial performance? New insights from the quantile approach," Finance Research Letters, Elsevier, vol. 64(C).
    7. Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023. "Bivariate distribution regression with application to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
    8. Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org, revised Jan 2025.
    9. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
    10. Alnafrah, Ibrahim & Belyaeva, Zhanna, 2024. "The nonlinear road to happiness: Making sense of ESGD impacts on well-being," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 365-381.
    11. Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
    12. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    13. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    2. David W. Hughes, 2021. "Estimating Nonlinear Network Data Models with Fixed Effects," Boston College Working Papers in Economics 1058, Boston College Department of Economics.
    3. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    4. Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020. "On the unbiased asymptotic normality of quantile regression with fixed effects," Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
    5. Liang Chen, 2019. "Nonparametric Quantile Regressions for Panel Data Models with Large T," Papers 1911.01824, arXiv.org, revised Sep 2020.
    6. Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
    7. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    8. Mugnier, Martin & Wang, Ao, 2022. "Identification and (Fast) Estimation of Large Nonlinear Panel Models with Two-Way Fixed Effects," The Warwick Economics Research Paper Series (TWERPS) 1422, University of Warwick, Department of Economics.
    9. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    10. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    11. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024. "MCMC conditional maximum likelihood for the two-way fixed-effects logit," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
    12. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    13. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    14. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    15. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    16. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    17. Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
    18. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    19. David Powell, 2022. "Quantile regression with nonadditive fixed effects," Empirical Economics, Springer, vol. 63(5), pages 2675-2691, November.
    20. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024. "Bootstrap Inference for Panel Data Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:70/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.