GCNET: graph-based prediction of stock price movement using graph convolutional network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Andrew Skabar, 2013. "Direction‐of‐Change Financial Time Series Forecasting using a Similarity‐Based Classification Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 409-422, August.
- Raehyun Kim & Chan Ho So & Minbyul Jeong & Sanghoon Lee & Jinkyu Kim & Jaewoo Kang, 2019. "HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction," Papers 1908.07999, arXiv.org, revised Nov 2019.
- Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alireza Jafari & Saman Haratizadeh, 2022. "NETpred: Network-based modeling and prediction of multiple connected market indices," Papers 2212.05916, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuhui Jin, 2024. "GraphCNNpred: A stock market indices prediction using a Graph based deep learning system," Papers 2407.03760, arXiv.org, revised Jul 2024.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Zeynep Cipiloglu Yildiz & Selim Baha Yildiz, 2022. "A portfolio construction framework using LSTM‐based stock markets forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2356-2366, April.
- Luke Sanborn & Matthew Sahagun, 2023. "Media Moments and Corporate Connections: A Deep Learning Approach to Stock Movement Classification," Papers 2309.06559, arXiv.org.
- Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
- Luis H. R. Alvarez E. & Paavo Salminen, 2017.
"Timing in the presence of directional predictability: optimal stopping of skew Brownian motion,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
- Luis H. R. Alvarez E. & Paavo Salminen, 2016. "Timing in the Presence of Directional Predictability: Optimal Stopping of Skew Brownian Motion," Papers 1608.04537, arXiv.org.
- Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.
- Alireza Jafari & Saman Haratizadeh, 2022. "NETpred: Network-based modeling and prediction of multiple connected market indices," Papers 2212.05916, arXiv.org.
- Xianchao Wu, 2020. "Event-Driven Learning of Systematic Behaviours in Stock Markets," Papers 2010.15586, arXiv.org.
- Wu, Xu & Zhang, Linlin & Li, Jia & Yan, Ruzhen, 2021. "Fractal statistical measure and portfolio model optimization under power-law distribution," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Guidolin, Massimo & Wang, Kai, 2023.
"The empirical performance of option implied volatility surface-driven optimal portfolios,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
- Massimo Guidolin & Kai Wang, 2022. "The Empirical Performance of Option Implied Volatility Surface-Driven Optimal Portfolios," BAFFI CAREFIN Working Papers 22190, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Hanshuang Tong & Jun Li & Ning Wu & Ming Gong & Dongmei Zhang & Qi Zhang, 2024. "Ploutos: Towards interpretable stock movement prediction with financial large language model," Papers 2403.00782, arXiv.org.
- Stanislav Anatolyev, 2021. "Directional news impact curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 94-107, January.
- Marah-Lisanne Thormann & Phan Tu Vuong & Alain B. Zemkoho, 2024. "The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization," Papers 2402.09194, arXiv.org.
- Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-04-25 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.11091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.