IDEAS home Printed from https://ideas.repec.org/a/ibn/ijefaa/v9y2017i11p100-108.html
   My bibliography  Save this article

Stock Market Prediction Performance of Neural Networks: A Literature Review

Author

Listed:
  • Ozgur Ican
  • Taha Bugra Celik

Abstract

In this paper, previous studies featuring an artificial neural networks based prediction model have been reviewed. The main purpose of this review is to examine studies which use directional prediction accuracy (also known as hit ratio) or profitability of the model as a benchmark since other forecast error measures - namely mean absolute deviation (MAD), root mean squared error (RMSE), mean absolute error (MAE) and mean squared error (MSE) - have been criticized for the argument that they are not able to actually show how useful the prediction model is, in terms of financial gains (i.e. for practical usage). In order to meet the publication selection criteria mentioned above, a large number of publications have been examined and 25 of papers satisfying the criteria are selected for comparison. Classification of the eligible papers are summarized in a table format for future studies.

Suggested Citation

  • Ozgur Ican & Taha Bugra Celik, 2017. "Stock Market Prediction Performance of Neural Networks: A Literature Review," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(11), pages 100-108, November.
  • Handle: RePEc:ibn:ijefaa:v:9:y:2017:i:11:p:100-108
    as

    Download full text from publisher

    File URL: http://ccsenet.org/journal/index.php/ijef/article/view/70421/38874
    Download Restriction: no

    File URL: http://ccsenet.org/journal/index.php/ijef/article/view/70421
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    2. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Teo Jasic & Douglas Wood, 2004. "The profitability of daily stock market indices trades based on neural network predictions: case study for the S&P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 285-297.
    5. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    6. Jingtao Yao & Chew Lim Tan & Hean-Lee Poh, 1999. "Neural Networks For Technical Analysis: A Study On Klci," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 221-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Enginar & Kazim Baris Atici, 2022. "Optimal forecast error as an unbiased estimator of abnormal return: A proposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 158-166, January.
    2. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    3. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    4. Hadi NekoeiQachkanloo & Benyamin Ghojogh & Ali Saheb Pasand & Mark Crowley, 2019. "Artificial Counselor System for Stock Investment," Papers 1903.00955, arXiv.org.
    5. Djoumbissie David Romain, 2020. "Predicting S&P500 Index direction with Transfer Learning and a Causal Graph as main Input," Papers 2011.13113, arXiv.org, revised Apr 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekiros, Stelios D., 2015. "Heuristic learning in intraday trading under uncertainty," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 34-49.
    2. Jacinta Chan Phooi M’ng & Mohammadali Mehralizadeh, 2016. "Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.
    3. Jacinta Chan Phooi M'ng & Azmin Azliza Aziz, 2016. "Using Neural Networks to Enhance Technical Trading Rule Returns: A Case with KLCI," Athens Journal of Business & Economics, Athens Institute for Education and Research (ATINER), vol. 2(1), pages 63-70, January.
    4. Bekiros, Stelios D., 2010. "Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1153-1170, June.
    5. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    6. Álvarez-Díaz, Marcos & Hammoudeh, Shawkat & Gupta, Rangan, 2014. "Detecting predictable non-linear dynamics in Dow Jones Islamic Market and Dow Jones Industrial Average indices using nonparametric regressions," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 22-35.
    7. Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
    8. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    9. Mohammad Rafiqul Islam & Nguyet Nguyen, 2020. "Comparison of Financial Models for Stock Price Prediction," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    10. Yasemin Deniz Akarım, 2013. "A Comparison of Linear and Nonlinear Models in Forecasting Market Risk: The Evidence from Turkish Derivative Exchange," Journal of Economics and Behavioral Studies, AMH International, vol. 5(3), pages 164-172.
    11. Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
    12. Stephan Schulmeister, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.
    13. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    14. Moreno, David & Olmeda, Ignacio, 2007. "Is the predictability of emerging and developed stock markets really exploitable?," European Journal of Operational Research, Elsevier, vol. 182(1), pages 436-454, October.
    15. Marcos Álvarez-Díaz & Shawkat Hammoudeh & Rangan Gupta, 2013. "Detecting Predictable Non-linear Dynamics in Dow Jones Industrial Average and Dow Jones Islamic Market Indices using Nonparametric Regressions," Working Papers 201385, University of Pretoria, Department of Economics.
    16. Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
    17. Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
    18. Song, Yu & Akagi, Fumio, 2016. "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock marketAuthor-Name: Qiu, Mingyue," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 1-7.
    19. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    20. Stelios D. Bekiros, 2013. "Irrational fads, short‐term memory emulation, and asset predictability," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 213-219, November.

    More about this item

    Keywords

    ANN (Artificial Neural Networks); financial times series forecasting; stock markets prediction; review;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijefaa:v:9:y:2017:i:11:p:100-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.