IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v32y2013i5p409-422.html
   My bibliography  Save this article

Direction‐of‐Change Financial Time Series Forecasting using a Similarity‐Based Classification Model

Author

Listed:
  • Andrew Skabar

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrew Skabar, 2013. "Direction‐of‐Change Financial Time Series Forecasting using a Similarity‐Based Classification Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 409-422, August.
  • Handle: RePEc:wly:jforec:v:32:y:2013:i:5:p:409-422
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Anatolyev, 2021. "Directional news impact curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 94-107, January.
    2. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    3. Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
    4. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    5. Alireza Jafari & Saman Haratizadeh, 2022. "NETpred: Network-based modeling and prediction of multiple connected market indices," Papers 2212.05916, arXiv.org.
    6. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Alireza Jafari & Saman Haratizadeh, 2022. "GCNET: graph-based prediction of stock price movement using graph convolutional network," Papers 2203.11091, arXiv.org, revised Aug 2022.
    8. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:32:y:2013:i:5:p:409-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.