IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i2p2356-2366.html
   My bibliography  Save this article

A portfolio construction framework using LSTM‐based stock markets forecasting

Author

Listed:
  • Zeynep Cipiloglu Yildiz
  • Selim Baha Yildiz

Abstract

A novel framework that injects future return predictions into portfolio constructionstrategies is proposed in this study. First, a long–short‐term‐memory (LSTM) model is trained to learn the monthly closing prices of the stocks. Then these predictions are used in the calculation of portfolio weights. Five different portfolio construction strategies are introduced including modifications to smart‐beta strategies. The suggested methods are compared to a number of baseline methods, using the stocks of BIST30 Turkey index. Our strategies yield a very high mean annualized return (25%) which is almost 50% higher than the baseline approaches. The mean Sharpe ratio of our strategies is 0.57, whereas the compared methods’ are 0.29 and −0.32. Comprehensive analysis of the results demonstrates that utilizing predicted returns in portfolio construction enables a significant improvement on the performance of the portfolios.

Suggested Citation

  • Zeynep Cipiloglu Yildiz & Selim Baha Yildiz, 2022. "A portfolio construction framework using LSTM‐based stock markets forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2356-2366, April.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:2356-2366
    DOI: 10.1002/ijfe.2277
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2277
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hitaj, Asmerilda & Zambruno, Giovanni, 2016. "Are Smart Beta strategies suitable for hedge fund portfolios?," Review of Financial Economics, Elsevier, vol. 29(C), pages 37-51.
    2. repec:dau:papers:123456789/4688 is not listed on IDEAS
    3. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    4. Ru Zhang & Zi-ang Lin & Shaozhen Chen & Zhixuan Lin & Xingwei Liang, 2018. "Multi-factor Stock Selection Model Based on Kernel Support Vector Machine," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(5), pages 9-18, October.
    5. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    6. Ru Zhang & Tong Cao, 2018. "Multi-factor Stock Selection Model Based on Adaboost," Business and Economic Research, Macrothink Institute, vol. 8(4), pages 119-129, December.
    7. Ru Zhang & Chenyu Huang & Weijian Zhang & Shaozhen Chen, 2018. "Multi Factor Stock Selection Model Based on LSTM," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(8), pages 1-36, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jujie Wang & Zhenzhen Zhuang & Liu Feng, 2022. "Intelligent Optimization Based Multi-Factor Deep Learning Stock Selection Model and Quantitative Trading Strategy," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
    2. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    3. Ganggang Guo & Yulei Rao & Feida Zhu & Fang Xu, 2020. "Innovative deep matching algorithm for stock portfolio selection using deep stock profiles," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    4. Shengdong Mu & Boyu Liu & Jijian Gu & Chaolung Lien & Nedjah Nadia, 2024. "Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model," Mathematics, MDPI, vol. 12(18), pages 1-20, September.
    5. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    6. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    7. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    8. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    9. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    10. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    11. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    12. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    13. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    14. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    15. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    16. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    17. Jie Fang & Jianwu Lin & Shutao Xia & Yong Jiang & Zhikang Xia & Xiang Liu, 2020. "Neural Network-based Automatic Factor Construction," Papers 2008.06225, arXiv.org, revised Oct 2020.
    18. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    19. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    20. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:2356-2366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.