IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i4d10.1140_epjb_e2016-60818-y.html
   My bibliography  Save this article

Cross-response in correlated financial markets: individual stocks

Author

Listed:
  • Shanshan Wang

    (Fakultät für Physik, Universität Duisburg-Essen)

  • Rudi Schäfer

    (Fakultät für Physik, Universität Duisburg-Essen)

  • Thomas Guhr

    (Fakultät für Physik, Universität Duisburg-Essen)

Abstract

Previous studies of the stock price response to trades focused on the dynamics of single stocks, i.e. they addressed the self-response. We empirically investigate the price response of one stock to the trades of other stocks in a correlated market, i.e. the cross-responses. How large is the impact of one stock on others and vice versa? – This impact of trades on the price change across stocks appears to be transient instead of permanent as we discuss from the viewpoint of market efficiency. Furthermore, we compare the self-responses on different scales and the self- and cross-responses on the same scale. We also find that the cross-correlation of the trade signs turns out to be a short-memory process.

Suggested Citation

  • Shanshan Wang & Rudi Schäfer & Thomas Guhr, 2016. "Cross-response in correlated financial markets: individual stocks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(4), pages 1-16, April.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:4:d:10.1140_epjb_e2016-60818-y
    DOI: 10.1140/epjb/e2016-60818-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-60818-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-60818-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hens, Thorsten & Schenk-Hoppe, Klaus Reiner (ed.), 2009. "Handbook of Financial Markets: Dynamics and Evolution," Elsevier Monographs, Elsevier, edition 1, number 9780123742582.
    2. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    2. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2020. "Comparing the market microstructure between two South African exchanges," Papers 2011.04367, arXiv.org.
    3. Luis Carlos Garc'ia del Molino & Iacopo Mastromatteo & Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "The Multivariate Kyle model: More is different," Papers 1806.07791, arXiv.org, revised Dec 2018.
    4. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2020. "The Multivariate Kyle model: More is different," Post-Print hal-02323433, HAL.
    5. L. C. Garcia Del Molino & I. Mastromatteo & Michael Benzaquen & J.-P. Bouchaud, 2019. "The Multivariate Kyle model: More is different," Working Papers hal-02323433, HAL.
    6. Tobias Braun & Jonas A Fiegen & Daniel C Wagner & Sebastian M Krause & Thomas Guhr, 2018. "Impact and recovery process of mini flash crashes: An empirical study," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-11, May.
    7. Roberto Mota Navarro & Francois Leyvraz & Hern'an Larralde, 2023. "Dynamical properties of volume at the spread in the Bitcoin/USD market," Papers 2304.01907, arXiv.org, revised May 2023.
    8. Rama Cont & Mihai Cucuringu & Chao Zhang, 2021. "Cross-Impact of Order Flow Imbalance in Equity Markets," Papers 2112.13213, arXiv.org, revised Jun 2023.
    9. Shanshan Wang, 2017. "Trading strategies for stock pairs regarding to the cross-impact cost," Papers 1701.03098, arXiv.org, revised Jul 2017.
    10. Mathieu Rosenbaum & Mehdi Tomas, 2021. "A characterisation of cross-impact kernels," Papers 2107.08684, arXiv.org.
    11. Henao-Londono, Juan C. & Guhr, Thomas, 2022. "Foreign exchange markets: Price response and spread impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Stephan Grimm & Thomas Guhr, 2018. "How spread changes affect the order book: Comparing the price responses of order deletions and placements to trades," Papers 1812.09067, arXiv.org.
    13. Wang, Shanshan & Schreckenberg, Michael & Guhr, Thomas, 2023. "Response functions as a new concept to study local dynamics in traffic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Wang & Rudi Schäfer & Thomas Guhr, 2016. "Average cross-responses in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-13, September.
    2. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    5. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    6. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    7. Thomas Fischer, 2017. "Can Redistribution by Means of a Progressive Labor Income-Taxation Transfer System Increase Financial Stability?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-3.
    8. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    9. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    10. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    11. B. Tóth & F. Lillo & J. D. Farmer, 2010. "Segmentation algorithm for non-stationary compound Poisson processes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 78(2), pages 235-243, November.
    12. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    13. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    14. Zhu, Mei & Wang, Duo & Guo, Maozheng, 2011. "Stochastic equilibria of an asset pricing model with heterogeneous beliefs and random dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 131-147, January.
    15. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    16. Serena Sordi & Marwil J. Dávila-Fernández, 2020. "Investment behaviour and “bull & bear” dynamics: modelling real and stock market interactions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 867-897, October.
    17. Pištěk, Miroslav & Slanina, František, 2011. "Diversity of scales makes an advantage: The case of the Minority Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2549-2561.
    18. Muhammad Zeeshan Younas, 2020. "How Did Risk Management Methods Change After The 2007 Sub-Prime Mortgage Crisis In The United Kingdom?," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 9(1), pages 22-31, March.
    19. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    20. Malgorzata Olszak, 2012. "Macroprudential policy - aim, instruments and institutional architecture (Polityka ostroznosciowa w ujêciu makro - cel, instrumenty i architektura instytucjonalna)," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 10(39), pages 7-32.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:4:d:10.1140_epjb_e2016-60818-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.