IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.15634.html
   My bibliography  Save this paper

RPS: Portfolio Asset Selection using Graph based Representation Learning

Author

Listed:
  • MohammadAmin Fazli
  • Parsa Alian
  • Ali Owfi
  • Erfan Loghmani

Abstract

Portfolio optimization is one of the essential fields of focus in finance. There has been an increasing demand for novel computational methods in this area to compute portfolios with better returns and lower risks in recent years. We present a novel computational method called Representation Portfolio Selection (RPS) by redefining the distance matrix of financial assets using Representation Learning and Clustering algorithms for portfolio selection to increase diversification. RPS proposes a heuristic for getting closer to the optimal subset of assets. Using empirical results in this paper, we demonstrate that widely used portfolio optimization algorithms, such as MVO, CLA, and HRP, can benefit from our asset subset selection.

Suggested Citation

  • MohammadAmin Fazli & Parsa Alian & Ali Owfi & Erfan Loghmani, 2021. "RPS: Portfolio Asset Selection using Graph based Representation Learning," Papers 2111.15634, arXiv.org.
  • Handle: RePEc:arx:papers:2111.15634
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.15634
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Andras Niedermayer & Daniel Niedermayer, 2006. "Applying Markowitz's Critical Line Algorithm," Diskussionsschriften dp0602, Universitaet Bern, Departement Volkswirtschaft.
    4. Johann Pfitzinger & Nico Katzke, 2019. "A constrained hierarchical risk parity algorithm with cluster-based capital allocation," Working Papers 14/2019, Stellenbosch University, Department of Economics.
    5. Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
    6. Terence Mills, 1997. "Stylized facts on the temporal and distributional properties of daily FT-SE returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 599-604.
    7. Victoria Lemieux & Payam S. Rahmdel & Rick Walker & B.L. William Wong & Mark D. Flood, 2015. "Clustering Techniques and Their Effect on Portfolio Formation and Risk Analysis," Staff Discussion Papers 15-01, Office of Financial Research, US Department of the Treasury.
    8. Guosheng Hu & Yuxin Hu & Kai Yang & Zehao Yu & Flood Sung & Zhihong Zhang & Fei Xie & Jianguo Liu & Neil Robertson & Timothy Hospedales & Qiangwei Miemie, 2017. "Deep Stock Representation Learning: From Candlestick Charts to Investment Decisions," Papers 1709.03803, arXiv.org, revised Feb 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    2. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    3. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    4. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    5. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    6. M Hashem Pesaran & Takashi Yamagata, 2024. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
    7. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    8. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    9. Jos'e Vin'icius de Miranda Cardoso & Jiaxi Ying & Daniel Perez Palomar, 2020. "Algorithms for Learning Graphs in Financial Markets," Papers 2012.15410, arXiv.org.
    10. Fei Ren & Ya-Nan Lu & Sai-Ping Li & Xiong-Fei Jiang & Li-Xin Zhong & Tian Qiu, 2017. "Dynamic Portfolio Strategy Using Clustering Approach," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    11. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
    12. Gautier Marti & Philippe Very & Philippe Donnat, 2015. "Toward a generic representation of random variables for machine learning," Working Papers hal-01196883, HAL.
    13. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    14. Pesaran, M. H. & Yamagata, T., 2012. "Testing CAPM with a Large Number of Assets (Updated 28th March 2012)," Cambridge Working Papers in Economics 1210, Faculty of Economics, University of Cambridge.
    15. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    16. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    17. Xiaoguang Huo & Feng Fu, 2017. "Risk-Aware Multi-Armed Bandit Problem with Application to Portfolio Selection," Papers 1709.04415, arXiv.org.
    18. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    19. Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
    20. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.15634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.