IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.07822.html
   My bibliography  Save this paper

On clustering financial time series: a need for distances between dependent random variables

Author

Listed:
  • Gautier Marti
  • Frank Nielsen
  • Philippe Donnat
  • S'ebastien Andler

Abstract

The following working document summarizes our work on the clustering of financial time series. It was written for a workshop on information geometry and its application for image and signal processing. This workshop brought several experts in pure and applied mathematics together with applied researchers from medical imaging, radar signal processing and finance. The authors belong to the latter group. This document was written as a long introduction to further development of geometric tools in financial applications such as risk or portfolio analysis. Indeed, risk and portfolio analysis essentially rely on covariance matrices. Besides that the Gaussian assumption is known to be inaccurate, covariance matrices are difficult to estimate from empirical data. To filter noise from the empirical estimate, Mantegna proposed using hierarchical clustering. In this work, we first show that this procedure is statistically consistent. Then, we propose to use clustering with a much broader application than the filtering of empirical covariance matrices from the estimate correlation coefficients. To be able to do that, we need to obtain distances between the financial time series that incorporate all the available information in these cross-dependent random processes.

Suggested Citation

  • Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
  • Handle: RePEc:arx:papers:1603.07822
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.07822
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
    2. Basalto, Nicolas & Bellotti, Roberto & De Carlo, Francesco & Facchi, Paolo & Pantaleo, Ester & Pascazio, Saverio, 2007. "Hausdorff clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 635-644.
    3. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, January.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    6. Gautier Marti & S'ebastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Papers 1603.04017, arXiv.org, revised Apr 2016.
    7. Bien, Jacob & Tibshirani, Robert, 2011. "Hierarchical Clustering With Prototypes via Minimax Linkage," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1075-1084.
    8. Li, Haijun & Scarsini, Marco & Shaked, Moshe, 1996. "Linkages: A Tool for the Construction of Multivariate Distributions with Given Nonoverlapping Multivariate Marginals," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 20-41, January.
    9. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    10. Zhenmin Chen & John Ness, 1996. "Space-conserving agglomerative algorithms," Journal of Classification, Springer;The Classification Society, vol. 13(1), pages 157-168, March.
    11. Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.
    12. Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
    13. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    14. Borysov, Petro & Hannig, Jan & Marron, J.S., 2014. "Asymptotics of hierarchical clustering for growing dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 465-479.
    15. M. Tumminello & F. Lillo & R. N. Mantegna, 2007. "Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance," Papers 0710.0576, arXiv.org.
    16. Gautier Marti & Philippe Very & Philippe Donnat & Frank Nielsen, 2015. "A proposal of a methodological framework with experimental guidelines to investigate clustering stability on financial time series," Papers 1509.05475, arXiv.org.
    17. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    18. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    19. Victoria Lemieux & Payam S. Rahmdel & Rick Walker & B.L. William Wong & Mark D. Flood, 2015. "Clustering Techniques and Their Effect on Portfolio Formation and Risk Analysis," Staff Discussion Papers 15-01, Office of Financial Research, US Department of the Treasury.
    20. Gautier Marti & Sébastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Post-Print hal-01400395, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Alexa Orton & Tim Gebbie, 2024. "Representation Learning for Regime detection in Block Hierarchical Financial Markets," Papers 2410.22346, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Sébastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Post-Print hal-01400395, HAL.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Gautier Marti & S'ebastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Papers 1603.04017, arXiv.org, revised Apr 2016.
    4. Jos'e Vin'icius de Miranda Cardoso & Jiaxi Ying & Daniel Perez Palomar, 2020. "Algorithms for Learning Graphs in Financial Markets," Papers 2012.15410, arXiv.org.
    5. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    6. Gautier Marti & Philippe Very & Philippe Donnat, 2015. "Toward a generic representation of random variables for machine learning," Working Papers hal-01196883, HAL.
    7. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    8. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    9. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    10. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    11. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Peter N. Posch & Daniel Ullmann & Dominik Wied, 2019. "Detecting structural changes in large portfolios," Empirical Economics, Springer, vol. 56(4), pages 1341-1357, April.
    13. Gautier Marti & Philippe Very & Philippe Donnat & Frank Nielsen, 2015. "A proposal of a methodological framework with experimental guidelines to investigate clustering stability on financial time series," Papers 1509.05475, arXiv.org.
    14. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    15. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    16. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    17. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    18. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    19. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    20. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.07822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.