Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators
Author
Abstract
Suggested Citation
DOI: 10.1186/s40854-020-00220-2
Download full text from publisher
References listed on IDEAS
- Dharmaraja Selvamuthu & Vineet Kumar & Abhishek Mishra, 2019. "Indian stock market prediction using artificial neural networks on tick data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Adam Kritzer, 2012. "Forex for Beginners," Springer Books, Springer, number 978-1-4302-4051-8, March.
- Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Kevin Cedric Guyard & Michel Deriaz, 2024. "Predicting Foreign Exchange EUR/USD direction using machine learning," Papers 2409.04471, arXiv.org, revised Oct 2024.
- J. C. Garza Sepúlveda & F. Lopez-Irarragorri & S. E. Schaeffer, 2023. "Forecasting Forex Trend Indicators with Fuzzy Rough Sets," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 229-287, June.
- Marian Pompiliu Cristescu & Raluca Andreea Nerisanu & Dumitru Alexandru Mara & Simona-Vasilica Oprea, 2022. "Using Market News Sentiment Analysis for Stock Market Prediction," Mathematics, MDPI, vol. 10(22), pages 1-12, November.
- Sugarbayar Enkhbayar & Robert Ślepaczuk, 2024. "Predictive modeling of foreign exchange trading signals using machine learning techniques," Working Papers 2024-10, Faculty of Economic Sciences, University of Warsaw.
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Cristescu Marian Pompiliu & Nerişanu Raluca Andreea & Mara Dumitru Alexandru, 2022. "Using Data Mining in the Sentiment Analysis Process on the Financial Market," Journal of Social and Economic Statistics, Sciendo, vol. 11(1-2), pages 36-58, December.
- David Liu & An Wei, 2022. "Regulated LSTM Artificial Neural Networks for Option Risks," FinTech, MDPI, vol. 1(2), pages 1-11, June.
- Yunze Li & Yanan Xie & Chen Yu & Fangxing Yu & Bo Jiang & Matloob Khushi, 2021. "Feature importance recap and stacking models for forex price prediction," Papers 2107.14092, arXiv.org.
- Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
- Marc Wildi & Branka Hadji Misheva, 2022. "A Time Series Approach to Explainability for Neural Nets with Applications to Risk-Management and Fraud Detection," Papers 2212.02906, arXiv.org.
- Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Soroush Omranpour & Guillaume Rabusseau & Reihaneh Rabbany, 2024. "Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data," Papers 2412.10540, arXiv.org.
- Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
- Theodoros Zafeiriou & Dimitris Kalles, 2024. "Comparative analysis of neural network architectures for short-term FOREX forecasting," Papers 2405.08045, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
- Bivas Dinda, 2024. "Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy," Papers 2406.02604, arXiv.org.
- Sarat Chandra Nayak & Bijan Bihari Misra, 2020. "Extreme learning with chemical reaction optimization for stock volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-23, December.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Kevin Cedric Guyard & Michel Deriaz, 2024. "Predicting Foreign Exchange EUR/USD direction using machine learning," Papers 2409.04471, arXiv.org, revised Oct 2024.
- Suppawong Tuarob & Poom Wettayakorn & Ponpat Phetchai & Siripong Traivijitkhun & Sunghoon Lim & Thanapon Noraset & Tipajin Thaipisutikul, 2021. "DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-32, December.
- Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
- Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
- Goel Himanshu & Agarwal Monika & Chhabra Meghna & Som Bhupender Kumar, 2023. "The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an Ann Model Approach: An Empirical Investigation Based on BSE Sensex," Folia Oeconomica Stetinensia, Sciendo, vol. 23(2), pages 116-131, December.
- Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
- Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
- Ao Yang & Qing Ye & Jia Zhai, 2024. "Volatility forecasting with Hybrid‐long short‐term memory models: Evidence from the COVID‐19 period," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2766-2786, July.
- Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.
- Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Forecasting with Deep Learning: S&P 500 index," Papers 2103.14080, arXiv.org.
- Tai-Liang Chen & Ching-Hsue Cheng & Jing-Wei Liu, 2019. "A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1967-1987, November.
- Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2024. "Could the Russia-Ukraine war stir up the persistent memory of interconnectivity among Islamic equity markets, energy commodities, and environmental factors?," Research in International Business and Finance, Elsevier, vol. 69(C).
- Haibin Xie & Yuying Sun & Pengying Fan, 2023. "Return direction forecasting: a conditional autoregressive shape model with beta density," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
More about this item
Keywords
Time series; Forex; Directional movement forecasting; Technical and macroeconomic indicators; LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-020-00220-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.