IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2019029.html
   My bibliography  Save this paper

Antisocial Online Behavior Detection Using Deep Learning

Author

Listed:
  • Zinovyeva, Elizaveta
  • Härdle, Wolfgang Karl
  • Lessmann, Stefan

Abstract

The shift of human communication to online platforms brings many benefits to society due to the ease of publication of opinions, sharing experience, getting immediate feedback and the opportunity to discuss the hottest topics. Besides that, it builds up a space for antisocial behavior such as harassment, insult and hate speech. This research is dedicated to detection of antisocial online behavior detection (AOB) - an umbrella term for cyberbullying, hate speech, cyberaggression and use of any hateful textual content. First, we provide a benchmark of deep learning models found in the literature on AOB detection. Deep learning has already proved to be efficient in different types of decision support: decision support from financial disclosures, predicting process behavior, text-based emoticon recognition. We compare methods of traditional machine learning with deep learning, while applying important advancements of natural language processing: we examine bidirectional encoding, compare attention mechanisms with simpler reduction techniques, and investigate whether the hierarchical representation of the data and application of attention on different layers might improve the predictive performance. As a partial contribution of the final hierarchical part, we introduce pseudo-sentence hierarchical attention network, an extension of hierarchical attention network – a recent advancement in document classification.

Suggested Citation

  • Zinovyeva, Elizaveta & Härdle, Wolfgang Karl & Lessmann, Stefan, 2019. "Antisocial Online Behavior Detection Using Deep Learning," IRTG 1792 Discussion Papers 2019-029, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2019029
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230805/1/irtg1792dp2019-029.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.

    More about this item

    Keywords

    Deep Learning; Cyberbullying; Antisocial Online Behavior; Attention Mechanism; Text Classification;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2019029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.