IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v44y2021i2d10.1007_s10203-021-00318-x.html
   My bibliography  Save this article

Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages

Author

Listed:
  • Gianna Figá-Talamanca

    (University of Perugia)

  • Sergio Focardi

    (Léonard de Vinci Pôle Universitaire, Research Center)

  • Marco Patacca

    (University of Verona)

Abstract

In this paper, we apply dynamic factor analysis to model the joint behaviour of Bitcoin, Ethereum, Litecoin and Monero, as a representative basket of the cryptocurrencies asset class. The empirical results suggest that the basket price is suitably described by a model with two dynamic factors. More precisely, we detect one integrated and one stationary factor until the end of August 2019 and two integrated factors afterwards. Based on this evidence, we define a multiple long-short trading strategy which proves profitable when the second factor is stationary.

Suggested Citation

  • Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
  • Handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00318-x
    DOI: 10.1007/s10203-021-00318-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-021-00318-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-021-00318-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Bistarelli & Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2019. "Model-based arbitrage in multi-exchange models for Bitcoin price dynamics," Digital Finance, Springer, vol. 1(1), pages 23-46, November.
    2. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    3. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    4. Cretarola, Alessandra & Figà-Talamanca, Gianna, 2020. "Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics," Economics Letters, Elsevier, vol. 191(C).
    5. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    6. Lütkepohl, Helmut & Poskitt, D.S., 1991. "Estimating Orthogonal Impulse Responses via Vector Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 7(4), pages 487-496, December.
    7. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    8. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    9. Tim Leung & Hung Nguyen, 2019. "Constructing cointegrated cryptocurrency portfolios for statistical arbitrage," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 36(4), pages 581-599, September.
    10. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    11. Kang, Sang Hoon & McIver, Ron P. & Hernandez, Jose Arreola, 2019. "Co-movements between Bitcoin and Gold: A wavelet coherence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    12. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    13. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    14. Albert S. Hu & Christine A. Parlour & Uday Rajan, 2019. "Cryptocurrencies: Stylized facts on a new investible instrument," Financial Management, Financial Management Association International, vol. 48(4), pages 1049-1068, December.
    15. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    16. Gianna Figà-Talamanca & Marco Patacca, 2020. "Disentangling the relationship between Bitcoin and market attention measures," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 71-91, March.
    17. P. S. Lintilhac & A. Tourin, 2017. "Model-based pairs trading in the bitcoin markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 703-716, May.
    18. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Alvaro Escribano & Daniel Peña, 1994. "Cointegration And Common Factors," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 577-586, November.
    20. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    21. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    22. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    23. Gianna Figá-Talamanca & Marco Patacca, 2019. "Does market attention affect Bitcoin returns and volatility?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 135-155, June.
    24. David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
    25. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    26. Benjamin Blau & Todd Griffith & Ryan Whitby, 2020. "Comovement in the Cryptocurrency Market," Economics Bulletin, AccessEcon, vol. 40(1), pages 448-455.
    27. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    28. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    29. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    30. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    31. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    32. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    33. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    34. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.
    35. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    36. Shahzad, Syed Jawad Hussain & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2019. "Is Bitcoin a better safe-haven investment than gold and commodities?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 322-330.
    37. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    38. Johansen, Soren, 2000. "Modelling of cointegration in the vector autoregressive model," Economic Modelling, Elsevier, vol. 17(3), pages 359-373, August.
    39. Chaim, Pedro & Laurini, Márcio P., 2019. "Is Bitcoin a bubble?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 222-232.
    40. Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2020. "Market attention and Bitcoin price modeling: theory, estimation and option pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 187-228, June.
    41. Paolo Giudici & Paolo Pagnottoni, 2020. "Vector error correction models to measure connectedness of Bitcoin exchange markets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 95-109, January.
    42. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Cretarola & Gianna Figà-Talamanca & Cyril Grunspan, 2021. "Blockchain and cryptocurrencies: economic and financial research," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 781-787, December.
    2. Figà-Talamanca, Gianna & Focardi, Sergio & Patacca, Marco, 2021. "Regime switches and commonalities of the cryptocurrencies asset class," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Gambarelli, Luca & Marchi, Gianluca & Muzzioli, Silvia, 2023. "Hedging effectiveness of cryptocurrencies in the European stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    4. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    5. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figà-Talamanca, Gianna & Focardi, Sergio & Patacca, Marco, 2021. "Regime switches and commonalities of the cryptocurrencies asset class," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Alessandra Cretarola & Gianna Figà-Talamanca & Cyril Grunspan, 2021. "Blockchain and cryptocurrencies: economic and financial research," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 781-787, December.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Alessandra Cretarola & Gianna Figà-Talamanca, 2021. "Detecting bubbles in Bitcoin price dynamics via market exuberance," Annals of Operations Research, Springer, vol. 299(1), pages 459-479, April.
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    7. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    8. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).
    9. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    10. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    11. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    12. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    13. Davide Provenzano & Rodolfo Baggio, 2021. "Complexity traits and synchrony of cryptocurrencies price dynamics," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 941-955, December.
    14. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    15. Michael Demmler & Amilcar Orlian Fernández Domínguez, 2021. "Bitcoin and the South Sea Company: A comparative analysis," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 197-224, March.
    16. Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2016. "Can Volume Predict Bitcoin Returns and Volatility? A Nonparametric Causality-in-Quantiles Approach," Working Papers 201662, University of Pretoria, Department of Economics.
    17. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    18. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    19. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    More about this item

    Keywords

    Cryptocurrencies; Cointegration; Dynamic factor models; Forecasting analysis; Pair-trading;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00318-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.