Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Larry G. Epstein & Martin Schneider, 2008.
"Ambiguity, Information Quality, and Asset Pricing,"
Journal of Finance, American Finance Association, vol. 63(1), pages 197-228, February.
- Larry Epstein & Martin Schneider, 2004. "Ambiguity, Information Quality and Asset Pricing," RCER Working Papers 507, University of Rochester - Center for Economic Research (RCER).
- Larry Epstein & Martin Schneider, 2005. "Ambiguity, Information Quality and Asset Pricing," RCER Working Papers 519, University of Rochester - Center for Economic Research (RCER).
- Wilko Bolt & Maarten R.C. Van Oordt, 2020.
"On the Value of Virtual Currencies,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 835-862, June.
- Wilko Bolt & Maarten van Oordt, 2016. "On the Value of Virtual Currencies," Staff Working Papers 16-42, Bank of Canada.
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021.
"Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies,"
The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
- Petukhina, Alla A. & Reule, Raphael C. G. & Härdle, Wolfgang Karl, 2019. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," IRTG 1792 Discussion Papers 2019-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
- Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Wilko Bolt & Maarten R.C. Van Oordt, 2020.
"On the Value of Virtual Currencies,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 835-862, June.
- Wilko Bolt & Maarten van Oordt, 2016. "On the Value of Virtual Currencies," Staff Working Papers 16-42, Bank of Canada.
- Wilko Bolt & Maarten van Oordt, 2016. "On the value of virtual currencies," DNB Working Papers 521, Netherlands Central Bank, Research Department.
- Irena Barjav{s}i'c & Nino Antulov-Fantulin, 2020. "Time-varying volatility in Bitcoin market and information flow at minute-level frequency," Papers 2004.00550, arXiv.org, revised Jan 2021.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
- Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Papers 1503.06704, arXiv.org, revised Oct 2015.
- Qiutong Guo & Shun Lei & Qing Ye & Zhiyang Fang, 2021. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price," Papers 2105.00707, arXiv.org.
- Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," Post-Print hal-01277584, HAL.
- Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Swiss Finance Institute Research Paper Series 18-22, Swiss Finance Institute, revised Mar 2018.
- Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
- Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Papers 1803.05663, arXiv.org.
- Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
- Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Pérez-Pico, Ada María & Ribeiro-Navarrete, Belén, 2018. "Does social network sentiment influence the relationship between the S&P 500 and gold returns?," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 57-64.
- Souza, Thársis T.P. & Aste, Tomaso, 2019. "Predicting future stock market structure by combining social and financial network information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
- Jia‐Yen Huang & Jin‐Hao Liu, 2020. "Using social media mining technology to improve stock price forecast accuracy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 104-116, January.
- Adam Hayes, 2015. "A Cost of Production Model for Bitcoin," Working Papers 1505, New School for Social Research, Department of Economics.
- Dimpfl, Thomas & Peter, Franziska J., 2021. "Nothing but noise? Price discovery across cryptocurrency exchanges," Journal of Financial Markets, Elsevier, vol. 54(C).
- David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Irena Barjav{s}i'c & Nino Antulov-Fantulin, 2020. "Time-varying volatility in Bitcoin market and information flow at minute-level frequency," Papers 2004.00550, arXiv.org, revised Jan 2021.
- Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
- Christie Smith & Aaron Kumar, 2018.
"Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys,"
Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
- Aaron Kumar & Christie Smith, 2017. "Crypto-currencies – An introduction to not-so-funny moneys," Reserve Bank of New Zealand Analytical Notes series AN2017/07, Reserve Bank of New Zealand.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
- Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
- Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 87-110.
- Zura Kakushadze & Willie Yu, 2019. "Altcoin-Bitcoin Arbitrage," Papers 1903.06033, arXiv.org, revised Apr 2019.
- Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
- Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019.
"An analysis of cryptocurrencies conditional cross correlations,"
Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
- Nektarios Aslanidis & Aurelio F. Bariviera & Oscar Martinez-Iba~nez, 2018. "An analysis of cryptocurrencies conditional cross correlations," Papers 1811.08365, arXiv.org, revised Feb 2019.
- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
- Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
- Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
- D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.
- Aslanidis, Nektarios & Fernández Bariviera, Aurelio & Savva, Christos S., 2020. "Weekly dynamic conditional correlations among cryptocurrencies and traditional assets," Working Papers 2072/417680, Universitat Rovira i Virgili, Department of Economics.
- Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2021-11-22 (Banking)
- NEP-BIG-2021-11-22 (Big Data)
- NEP-CWA-2021-11-22 (Central and Western Asia)
- NEP-FOR-2021-11-22 (Forecasting)
- NEP-MST-2021-11-22 (Market Microstructure)
- NEP-PAY-2021-11-22 (Payment Systems and Financial Technology)
- NEP-RMG-2021-11-22 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.14317. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.