IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.06042.html
   My bibliography  Save this paper

Image Processing Tools for Financial Time Series Classification

Author

Listed:
  • Bairui Du
  • Delmiro Fernandez-Reyes
  • Paolo Barucca

Abstract

The application of deep learning to time series forecasting is one of the major challenges in present machine learning. We propose a novel methodology that combines machine learning and image processing methods to define and predict market states with intraday financial data. A wavelet transform is applied to the log-return of stock prices for both image extraction and denoising. A convolutional neural network then extracts patterns from denoised wavelet images to classify daily time series, i.e. a market state is associated with the binary prediction of the daily close price movement based on the wavelet image constructed from the price changes in the first hours of the day. This method overcomes the low signal-to-noise ratio problem in financial time series and gets a competitive prediction accuracy of the market states 'Up' and 'Down' of financial data as tested on the S&P 500.

Suggested Citation

  • Bairui Du & Delmiro Fernandez-Reyes & Paolo Barucca, 2020. "Image Processing Tools for Financial Time Series Classification," Papers 2008.06042, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:2008.06042
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.06042
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pier Francesco Procacci & Tomaso Aste, 2019. "Forecasting market states," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1491-1498, September.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    3. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    4. Pier Francesco Procacci & Tomaso Aste, 2018. "Forecasting market states," Papers 1807.05836, arXiv.org, revised May 2019.
    5. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Zeng & Tucker Balch & Manuela Veloso, 2021. "Deep Video Prediction for Time Series Forecasting," Papers 2102.12061, arXiv.org, revised Nov 2021.
    2. Srijan Sood & Zhen Zeng & Naftali Cohen & Tucker Balch & Manuela Veloso, 2020. "Visual Time Series Forecasting: An Image-driven Approach," Papers 2011.09052, arXiv.org, revised Nov 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    2. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    3. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    4. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    5. Gaël Giraud & Céline Rochon, 2010. "Transition to Equilibrium in International Trades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00657038, HAL.
    6. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    7. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    8. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    9. repec:cty:dpaper:10.1080/14697680701881763 is not listed on IDEAS
    10. Iori, G. & Daniels, M.G. & Farmer, J.D. & Gillemot, L. & Krishnamurthy, S. & Smith, E., 2003. "An analysis of price impact function in order-driven markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 146-151.
    11. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    12. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    13. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    14. repec:cty:dpaper:1447 is not listed on IDEAS
    15. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    16. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    17. Defu Cao & Yousef El-Laham & Loc Trinh & Svitlana Vyetrenko & Yan Liu, 2022. "DSLOB: A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift," Papers 2211.11513, arXiv.org.
    18. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    19. Philippe Bergault & Enzo Cogn'eville, 2024. "Simulating and analyzing a sparse order book: an application to intraday electricity markets," Papers 2410.06839, arXiv.org.
    20. Buis, Boyd & Pieterse-Bloem, Mary & Verschoor, Willem F.C. & Zwinkels, Remco C.J., 2024. "Gamma positioning and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    21. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    22. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.06042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.