IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.05836.html
   My bibliography  Save this paper

Forecasting market states

Author

Listed:
  • Pier Francesco Procacci
  • Tomaso Aste

Abstract

We propose a novel methodology to define, analyze and forecast market states. In our approach market states are identified by a reference sparse precision matrix and a vector of expectation values. In our procedure, each multivariate observation is associated with a given market state accordingly to a minimization of a penalized Mahalanobis distance. The procedure is made computationally very efficient and can be used with a large number of assets. We demonstrate that this procedure is successful at clustering different states of the markets in an unsupervised manner. In particular, we describe an experiment with one hundred log-returns and two states in which the methodology automatically associates states prevalently to pre- and post- crisis periods with one state gathering periods with average positive returns and the other state periods with average negative returns, therefore discovering spontaneously the common classification of `bull' and `bear' markets. In another experiment, with again one hundred log-returns and two states, we demonstrate that this procedure can be efficiently used to forecast off-sample future market states with significant prediction accuracy. This methodology opens the way to a range of applications in risk management and trading strategies in the context where the correlation structure plays a central role.

Suggested Citation

  • Pier Francesco Procacci & Tomaso Aste, 2018. "Forecasting market states," Papers 1807.05836, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1807.05836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.05836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    2. Barfuss, Wolfram & Massara, Guido Previde & Di Matteo, T. & Aste, Tomaso, 2016. "Parsimonious modeling with information filtering networks," LSE Research Online Documents on Economics 68860, London School of Economics and Political Science, LSE Library.
    3. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    4. V. Bergen & M. Escobar & A. Rubtsov & R. Zagst, 2018. "Robust multivariate portfolio choice with stochastic covariance in the presence of ambiguity," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1265-1294, August.
    5. Klaus Grobys, 2018. "Risk-managed 52-week high industry momentum, momentum crashes and hedging macroeconomic risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1233-1247, July.
    6. Alexander Tchernitser & Dmitri Rubisov, 2009. "Robust estimation of historical volatility and correlations in risk management," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 43-54.
    7. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    8. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    9. D. Hendricks & T. Gebbie & D. Wilcox, 2016. "Detecting intraday financial market states using temporal clustering," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1657-1678, November.
    10. Jin-Chuan Duan & Ivilina Popova & Peter Ritchken, 2002. "Option pricing under regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 116-132.
    11. Daniël Linders & Ben Stassen, 2016. "The multivariate Variance Gamma model: basket option pricing and calibration," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 555-572, April.
    12. Sergio Focardi & Frank Fabozzi, 2004. "A methodology for index tracking based on time-series clustering," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 417-425.
    13. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    14. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    15. Thilo A. Schmitt & Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2013. "Non-Stationarity in Financial Time Series and Generic Features," Papers 1304.5130, arXiv.org, revised May 2013.
    16. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    17. John Douglas (J.D.) Opdyke, 2007. "Comparing Sharpe ratios: So where are the p-values?," Journal of Asset Management, Palgrave Macmillan, vol. 8(5), pages 308-336, December.
    18. Roberto Daluiso & Massimo Morini, 2017. "Hedging efficiently under correlation," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1535-1547, October.
    19. Gilles Zumbach & Luis Fern�ndez, 2014. "Option pricing with realistic ARCH processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 143-170, January.
    20. Lin, Wen-Ling & Engle, Robert F & Ito, Takatoshi, 1994. "Do Bulls and Bears Move across Borders? International Transmission of Stock Returns and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(3), pages 507-538.
    21. Huazhu Zhang & Cheng Yan, 2018. "Modelling fundamental analysis in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1315-1326, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bairui Du & Delmiro Fernandez-Reyes & Paolo Barucca, 2020. "Image Processing Tools for Financial Time Series Classification," Papers 2008.06042, arXiv.org, revised Aug 2020.
    2. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
    3. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Tomaso Aste, 2020. "Stress testing and systemic risk measures using multivariate conditional probability," Papers 2004.06420, arXiv.org, revised May 2021.
    5. Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
    6. Isobel Seabrook & Fabio Caccioli & Tomaso Aste, 2021. "An Information Filtering approach to stress testing: an application to FTSE markets," Papers 2106.08778, arXiv.org.
    7. Pier Francesco Procacci & Tomaso Aste, 2021. "Portfolio Optimization with Sparse Multivariate Modelling," Papers 2103.15232, arXiv.org.
    8. Pier Francesco Procacci & Carolyn E. Phelan & Tomaso Aste, 2020. "Market structure dynamics during COVID-19 outbreak," Papers 2003.10922, arXiv.org.
    9. Seabrook, Isobel & Caccioli, Fabio & Aste, Tomaso, 2022. "Quantifying impact and response in markets using information filtering networks," LSE Research Online Documents on Economics 115308, London School of Economics and Political Science, LSE Library.
    10. Tomaso Aste, 2021. "Stress Testing and Systemic Risk Measures Using Elliptical Conditional Multivariate Probabilities," JRFM, MDPI, vol. 14(5), pages 1-17, May.
    11. Danial Saef & Yuanrong Wang & Tomaso Aste, 2022. "Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing," Papers 2208.12614, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    2. Baele, Lieven, 2005. "Volatility Spillover Effects in European Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(2), pages 373-401, June.
    3. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    4. Henryk Gurgul & Robert Syrek, 2010. "Polish stock market and some foreign markets - dependence analysis by regime-switching copulas," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 8, pages 21-39.
    5. Maria Kasch & Massimiliano Caporin, 2013. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 706-742, September.
    6. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31., Puey Ungphakorn Institute for Economic Research, revised Jun 2016.
    7. Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.
    8. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    9. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    10. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.
    11. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31, Puey Ungphakorn Institute for Economic Research.
    12. Ozer-Imer, Itir & Ozkan, Ibrahim, 2014. "An empirical analysis of currency volatilities during the recent global financial crisis," Economic Modelling, Elsevier, vol. 43(C), pages 394-406.
    13. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    14. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    15. Mun, Kyung-Chun, 2005. "Contagion and impulse response of international stock markets around the 9-11 terrorist attacks," Global Finance Journal, Elsevier, vol. 16(1), pages 48-68, August.
    16. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    17. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    18. Francis, Bill B. & Hasan, Iftekhar & Hunter, Delroy M., 2002. "Return-volatility linkages in the international equity and currency markets," Bank of Finland Research Discussion Papers 9/2002, Bank of Finland.
    19. de Goeij, Peter & Marquering, Wessel, 2009. "Stock and bond market interactions with level and asymmetry dynamics: An out-of-sample application," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 318-329, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.05836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.