IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.11513.html
   My bibliography  Save this paper

DSLOB: A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift

Author

Listed:
  • Defu Cao
  • Yousef El-Laham
  • Loc Trinh
  • Svitlana Vyetrenko
  • Yan Liu

Abstract

In electronic trading markets, limit order books (LOBs) provide information about pending buy/sell orders at various price levels for a given security. Recently, there has been a growing interest in using LOB data for resolving downstream machine learning tasks (e.g., forecasting). However, dealing with out-of-distribution (OOD) LOB data is challenging since distributional shifts are unlabeled in current publicly available LOB datasets. Therefore, it is critical to build a synthetic LOB dataset with labeled OOD samples serving as a testbed for developing models that generalize well to unseen scenarios. In this work, we utilize a multi-agent market simulator to build a synthetic LOB dataset, named DSLOB, with and without market stress scenarios, which allows for the design of controlled distributional shift benchmarking. Using the proposed synthetic dataset, we provide a holistic analysis on the forecasting performance of three different state-of-the-art forecasting methods. Our results reflect the need for increased researcher efforts to develop algorithms with robustness to distributional shifts in high-frequency time series data.

Suggested Citation

  • Defu Cao & Yousef El-Laham & Loc Trinh & Svitlana Vyetrenko & Yan Liu, 2022. "DSLOB: A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift," Papers 2211.11513, arXiv.org.
  • Handle: RePEc:arx:papers:2211.11513
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.11513
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William B. Elliott & Richard S. Warr, 2003. "Price Pressure on the NYSE and Nasdaq: Evidence from S&P 500 Index Changes," Financial Management, Financial Management Association, vol. 32(3), Fall.
    2. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    3. Justin Sirignano, 2016. "Deep Learning for Limit Order Books," Papers 1601.01987, arXiv.org, revised Jul 2016.
    4. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    5. Diane K. Denis & John J. McConnell & Alexei V. Ovtchinnikov & Yun Yu, 2003. "S&P 500 Index Additions and Earnings Expectations," Journal of Finance, American Finance Association, vol. 58(5), pages 1821-1840, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Haochong & Chen, Yan & Yu, Miaolin & Ban, Guihua & Xiong, Zhenhua & Su, Jin & Zhuo, Yixin & Hu, Jiaqiu, 2024. "Alleviating distribution shift and mining hidden temporal variations for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    2. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    3. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    4. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    5. Gaël Giraud & Céline Rochon, 2010. "Transition to Equilibrium in International Trades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00657038, HAL.
    6. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    7. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    8. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    9. Azevedo, Alcino & Karim, Mohamad & Gregoriou, Andros & Rhodes, Mark, 2014. "Stock price and volume effects associated with changes in the composition of the FTSE Bursa Malaysian KLCI," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 20-35.
    10. repec:cty:dpaper:10.1080/14697680701881763 is not listed on IDEAS
    11. Iori, G. & Daniels, M.G. & Farmer, J.D. & Gillemot, L. & Krishnamurthy, S. & Smith, E., 2003. "An analysis of price impact function in order-driven markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 146-151.
    12. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    13. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    14. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    15. repec:cty:dpaper:1447 is not listed on IDEAS
    16. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    17. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    18. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    20. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    21. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    22. Fabio Della Rossa & Lorenzo Giannini & Pietro DeLellis, 2020. "Herding or wisdom of the crowd? Controlling efficiency in a partially rational financial market," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    23. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.11513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.