IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v164y2024ics0165188924000721.html
   My bibliography  Save this article

Gamma positioning and market quality

Author

Listed:
  • Buis, Boyd
  • Pieterse-Bloem, Mary
  • Verschoor, Willem F.C.
  • Zwinkels, Remco C.J.

Abstract

In this paper, we study the effect of the gamma positioning of dynamic hedgers on market quality through simulations. In our zero-intelligence model, the presence of dynamic hedgers enhances market liquidity under normal conditions. However, positive gamma helps sustain liquidity in stressed scenarios, while negative gamma depletes it. We find that an increase in the net gamma positioning of dynamic hedgers reduces volatility and increases market stability, whereas a negative gamma positioning increases volatility and makes the market more prone to failure. Price discovery typically worsens when dynamic hedgers become more prevalent, regardless of the sign of their positioning. Our findings imply that steering the net gamma position of dynamic hedgers can be considered a policy instrument to improve market quality, especially for instruments with low liquidity or low traded volume.

Suggested Citation

  • Buis, Boyd & Pieterse-Bloem, Mary & Verschoor, Willem F.C. & Zwinkels, Remco C.J., 2024. "Gamma positioning and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:dyncon:v:164:y:2024:i:c:s0165188924000721
    DOI: 10.1016/j.jedc.2024.104880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188924000721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2024.104880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderegg, Benjamin & Ulmann, Florian & Sornette, Didier, 2022. "The impact of option hedging on the spot market volatility," Journal of International Money and Finance, Elsevier, vol. 124(C).
    2. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    3. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    4. B Bouchard & G Loeper & Y Zou, 2015. "Hedging of covered options with linear market impact and gamma constraint," Papers 1512.07087, arXiv.org.
    5. Shmuel Baruch & G. Andrew Karolyi & Michael L. Lemmon, 2007. "Multimarket Trading and Liquidity: Theory and Evidence," Journal of Finance, American Finance Association, vol. 62(5), pages 2169-2200, October.
    6. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84, January.
    7. Buis, Boyd & Pieterse-Bloem, Mary & Verschoor, Willem F.C. & Zwinkels, Remco C.J., 2020. "Expected issuance fees and market liquidity," Journal of Financial Markets, Elsevier, vol. 48(C).
    8. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    9. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    10. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    11. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    12. Zachary S Levine & Scott A Hale & Luciano Floridi, 2017. "The October 2014 United States Treasury bond flash crash and the contributory effect of mini flash crashes," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-14, November.
    13. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    14. Marc Jeannin & Giulia Iori & David Samuel, 2008. "Modeling stock pinning," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 823-831.
    15. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    16. Arifovic, Jasmina & He, Xue-zhong & Wei, Lijian, 2022. "Machine learning and speed in high-frequency trading," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    17. Baltussen, Guido & Da, Zhi & Lammers, Sten & Martens, Martin, 2021. "Hedging demand and market intraday momentum," Journal of Financial Economics, Elsevier, vol. 142(1), pages 377-403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Marc Jeannin & Giulia Iori & David Samuel, 2008. "Modeling stock pinning," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 823-831.
    3. Mohammad Zare & Omid Naghshineh Arjmand & Erfan Salavati & Adel Mohammadpour, 2021. "An Agent‐Based model for Limit Order Book: Estimation and simulation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1112-1121, January.
    4. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    5. Wladimir Ostrovsky, 2023. "Dealer Strategies in Agent-Based Models," Papers 2312.05943, arXiv.org.
    6. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    7. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    8. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    9. Kyubin Yim & Gabjin Oh & Seunghwan Kim, 2016. "Understanding Financial Market States Using an Artificial Double Auction Market," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    11. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    12. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    13. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    14. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
    15. Anton Bovier & Jiri Cerny & Ostap Hryniv, 2004. "The Opinion Game: Stock price evolution from microscopic market modelling," Papers cond-mat/0401422, arXiv.org.
    16. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    17. Aaron Wheeler & Jeffrey D. Varner, 2023. "Scalable Agent-Based Modeling for Complex Financial Market Simulations," Papers 2312.14903, arXiv.org, revised Jan 2024.
    18. Thiago W. Alves & Ionut Florescu & George Calhoun & Dragos Bozdog, 2020. "SHIFT: A Highly Realistic Financial Market Simulation Platform," Papers 2002.11158, arXiv.org, revised Aug 2020.
    19. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    20. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.

    More about this item

    Keywords

    Dynamic hedging; Feedback effect; Market liquidity; Market quality; Simulation;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:164:y:2024:i:c:s0165188924000721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.