IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v24y2024i9p1227-1234.html
   My bibliography  Save this article

Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS

Author

Listed:
  • Christian Bongiorno
  • Damien Challet

Abstract

The Average Oracle, a simple and very fast covariance filtering method, is shown to yield superior Sharpe ratios than the current state-of-the-art (and complex) methods, Dynamic Conditional Covariance coupled to Non-Linear Shrinkage (DCC-NLS). We pit all the known variants of DCC-NLS (quadratic shrinkage, gross-leverage or turnover limitations, and factor-augmented NLS) against the Average Oracle in large-scale randomized experiments. We find generically that while some variants of DCC-NLS sometimes yield the lowest average realized volatility, albeit with a small improvement, their excessive gross leverage and investment concentration, and their 10-time larger turnover contribute to smaller average portfolio returns, which mechanically result in smaller realized Sharpe ratios than the Average Oracle. We also provide simple analytical arguments about the origin of the advantage of the Average Oracle over NLS in a changing world.

Suggested Citation

  • Christian Bongiorno & Damien Challet, 2024. "Covariance matrix filtering and portfolio optimisation: the average oracle vs non-linear shrinkage and all the variants of DCC-NLS," Quantitative Finance, Taylor & Francis Journals, vol. 24(9), pages 1227-1234, September.
  • Handle: RePEc:taf:quantf:v:24:y:2024:i:9:p:1227-1234
    DOI: 10.1080/14697688.2024.2372053
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2024.2372053
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2024.2372053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:24:y:2024:i:9:p:1227-1234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.