IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01149704.html
   My bibliography  Save this paper

Sharper asset ranking from total drawdown durations

Author

Listed:
  • Damien Challet

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec)

Abstract

The total duration of drawdowns is shown to provide a moment-free, unbiased, efficient and robust estimator of Sharpe ratios both for Gaussian and heavy-tailed price returns. We then use this quantity to infer an analytic expression of the bias of moment-based Sharpe ratio estimators as a function of the return distribution tail exponent. The heterogeneity of tail exponents at any given time among assets implies that our new method yields significantly different asset rankings than those of moment-based methods, especially in periods large volatility. This is fully confirmed by using 20 years of historical data on 3449 liquid US equities.

Suggested Citation

  • Damien Challet, 2017. "Sharper asset ranking from total drawdown durations," Post-Print hal-01149704, HAL.
  • Handle: RePEc:hal:journl:hal-01149704
    DOI: 10.1080/1350486X.2017.1297728
    Note: View the original document on HAL open archive server: https://hal.science/hal-01149704
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01149704/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/1350486X.2017.1297728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Damien Challet, 2015. "One- and two-sample nonparametric tests for the signal-to-noise ratio based on record statistics," Papers 1502.05367, arXiv.org, revised Jul 2015.
    2. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    3. Auer, Benjamin R. & Schuhmacher, Frank, 2013. "Robust evidence on the similarity of Sharpe ratio and drawdown-based hedge fund performance rankings," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 153-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Bongiorno & Damien Challet, 2022. "Reactive global minimum variance portfolios with k-BAHC covariance cleaning," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, William Jr. & Burdekin, Richard C.K. & Weidenmier, Marc D., 2006. "Volatility in an era of reduced uncertainty: Lessons from Pax Britannica," Journal of Financial Economics, Elsevier, vol. 79(3), pages 693-707, March.
    2. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    3. Dongweí Su, 2003. "Risk, Return and Regulation in Chinese Stock Markets," World Scientific Book Chapters, in: Chinese Stock Markets A Research Handbook, chapter 3, pages 75-122, World Scientific Publishing Co. Pte. Ltd..
    4. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    5. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    6. Sabbaghi, Omid & Sabbaghi, Navid, 2011. "Carbon Financial Instruments, thin trading, and volatility: Evidence from the Chicago Climate Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 399-407.
    7. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    8. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    9. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    10. Brooks, Robert D. & Davidson, Sinclair & Faff, Robert W., 1997. "An examination of the effects of major political change on stock market volatility: the South African experience," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 255-275, October.
    11. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    12. Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
    13. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    14. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
    15. Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
    16. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    18. Vafiadis Nikolaos, 2015. "Forecasting Volatility and the Risk–Return Tradeoff: An Application on the Fama–French Benchmark Market Return," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 181-216, July.
    19. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    20. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01149704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.