IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.11169.html
   My bibliography  Save this paper

On the modelling of multivariate counts with Cox processes and dependent shot noise intensities

Author

Listed:
  • Benjamin Avanzi
  • Gregory Clive Taylor
  • Bernard Wong
  • Xinda Yang

Abstract

In this paper, we develop a method to model and estimate several, _dependent_ count processes, using granular data. Specifically, we develop a multivariate Cox process with shot noise intensities to jointly model the arrival process of counts (e.g. insurance claims). The dependency structure is introduced via multivariate shot noise _intensity_ processes which are connected with the help of L\'evy copulas. In aggregate, our approach allows for (i) over-dispersion and auto-correlation within each line of business; (ii) realistic features involving time-varying, known covariates; and (iii) parsimonious dependence between processes without requiring simultaneous primary (e.g. accidents) events. The explicit incorporation of time-varying, known covariates can accommodate characteristics of real data and hence facilitate implementation in practice. In an insurance context, these could be changes in policy volumes over time, as well as seasonality patterns and trends, which may explain some of the relationship (dependence) between multiple claims processes, or at least help tease out those relationships. Finally, we develop a filtering algorithm based on the reversible-jump Markov Chain Monte Carlo (RJMCMC) method to estimate the latent stochastic intensities and illustrate model calibration using real data from the AUSI data set.

Suggested Citation

  • Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
  • Handle: RePEc:arx:papers:2004.11169
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.11169
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    4. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," LIDAM Reprints ISBA 2014024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2013. "Individual Loss Reserving With The Multivariate Skew Normal Framework," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 399-428, September.
    6. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    7. Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
    8. Avanzi, Benjamin & Cassar, Luke C. & Wong, Bernard, 2011. "Modelling Dependence in Insurance Claims Processes with Lévy Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 575-609, November.
    9. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    10. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    11. Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
    12. Shi, Peng & Frees, Edward W., 2011. "Dependent Loss Reserving using Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 449-486, November.
    13. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    14. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    15. Jinlong Huang & Chunjuan Qiu & Xianyi Wu, 2015. "Stochastic Loss Reserving in Discrete Time: Individual vs. Aggregate Data Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2180-2206, May.
    16. Merz, M. & Wüthrich, M. V., 2007. "Prediction Error of the Chain Ladder Reserving Method applied to Correlated Run-off Triangles," Annals of Actuarial Science, Cambridge University Press, vol. 2(1), pages 25-50, March.
    17. Merz, Michael & Wüthrich, Mario V. & Hashorva, Enkelejd, 2013. "Dependence modelling in multivariate claims run-off triangles," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 3-25, March.
    18. Matsui, Muneya, 2014. "Prediction in a non-homogeneous Poisson cluster model," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 10-17.
    19. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    20. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2016. "Correlations Between Insurance Lines Of Business: An Illusion Or A Real Phenomenon? Some Methodological Considerations," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 225-263, May.
    21. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    22. Badescu, Andrei L. & Chen, Tianle & Lin, X. Sheldon & Tang, Dameng, 2019. "A Marked Cox Model For The Number Of Ibnr Claims: Estimation And Application," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 709-739, September.
    23. Centanni, Silvia & Minozzo, Marco, 2006. "A Monte Carlo Approach to Filtering for a Class of Marked Doubly Stochastic Poisson Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1582-1597, December.
    24. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    25. Arjas, Elja, 1989. "The Claims Reserving Problem in Non-Life Insurance: Some Structural Ideas," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 139-152, November.
    26. Michael Merz & Mario Wüthrich, 2008. "Prediction Error of the Multivariate Chain Ladder Reserving Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 175-197.
    27. Avanzi, Benjamin & Tao, Jamie & Wong, Bernard & Yang, Xinda, 2016. "Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas," Annals of Actuarial Science, Cambridge University Press, vol. 10(1), pages 87-117, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    2. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    3. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    4. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    5. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    6. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    7. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    8. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    9. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    10. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    11. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    12. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    13. Denuit, Michel & Trufin, Julien, 2016. "Collective Loss Reserving with Two Types of Claims in Motor Third Party Liability Insurance," LIDAM Discussion Papers ISBA 2016029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    15. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    16. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    17. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    18. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    19. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    20. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.11169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.