IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v41y2011i02p449-486_00.html
   My bibliography  Save this article

Dependent Loss Reserving using Copulas

Author

Listed:
  • Shi, Peng
  • Frees, Edward W.

Abstract

Modeling dependencies among multiple loss triangles has important implications for the determination of loss reserves, a critical element of risk management and capital allocation practices of property-casualty insurers. In this article, we propose a copula regression model for dependent lines of business that can be used to predict unpaid losses and hence determine loss reserves. The proposed method, relating the payments in different run-off triangles through a copula function, allows the analyst to use flexible parametric families for the loss distribution and to understand the associations among lines of business. Based on the copula model, a parametric bootstrap procedure is developed to incorporate the uncertainty in parameter estimates. To illustrate this method, we consider an insurance portfolio consisting of personal and commercial automobile lines. When applied to the data of a major US property-casualty insurer, our method provides comparable point prediction of unpaid losses with the industry's standard practice, chain-ladder estimates. Moreover, our flexible structure allows us to easily compute the entire predictive distribution of unpaid losses. This procedure also readily yields accident year reserves, calendar year reserves, as well as the aggregate reserves. One important implication of the dependence modeling is that it allows analysts to quantify the diversification effects in risk capital analysis. We demonstrate these effects by calculating commonly used risk measures, including value at risk and conditional tail expectation, for the insurer's combined portfolio of personal and commercial automobile lines.

Suggested Citation

  • Shi, Peng & Frees, Edward W., 2011. "Dependent Loss Reserving using Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 449-486, November.
  • Handle: RePEc:cup:astinb:v:41:y:2011:i:02:p:449-486_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000908/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    3. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    4. Zheng-wen Wang & Ling Tian, 2016. "How much catastrophe insurance fund needed in China for the ‘big one’? An estimation with comonotonicity method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 55-68, October.
    5. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    6. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    7. Lu Xiong & Vajira Manathunga & Jiyao Luo & Nicholas Dennison & Ruicheng Zhang & Zhenhai Xiang, 2023. "AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods," Risks, MDPI, vol. 11(7), pages 1-17, July.
    8. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    9. Anja Breuer & Yves Staudt, 2022. "Equalization Reserves for Reinsurance and Non-Life Undertakings in Switzerland," Risks, MDPI, vol. 10(3), pages 1-41, March.
    10. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    11. Baumgartner, Carolin & Gruber, Lutz F. & Czado, Claudia, 2015. "Bayesian total loss estimation using shared random effects," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 194-201.
    12. Peng Shi, 2017. "A Multivariate Analysis of Intercompany Loss Triangles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 717-737, June.
    13. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    14. Côté, Marie-Pier & Genest, Christian & Omelka, Marek, 2019. "Rank-based inference tools for copula regression, with property and casualty insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 1-15.
    15. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    16. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    17. Guo, Nan & Wang, Fang & Yang, Jingping, 2017. "Remarks on composite Bernstein copula and its application to credit risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 38-48.
    18. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    19. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:41:y:2011:i:02:p:449-486_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.