IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i10p2180-2206.html
   My bibliography  Save this article

Stochastic Loss Reserving in Discrete Time: Individual vs. Aggregate Data Models

Author

Listed:
  • Jinlong Huang
  • Chunjuan Qiu
  • Xianyi Wu

Abstract

In this paper, a stochastic individual data model is considered. It accommodates occurrence times, reporting, and settlement delays and severity of every individual claims. This formulation gives rise to a model for the corresponding aggregate data under which classical chain ladder and Bornhuetter–Ferguson algorithms apply. A claims reserving algorithm is developed under this individual data model and comparisons of its performance with chain ladder and Bornhuetter–Ferguson algorithms are made to reveal the effects of using individual data to instead aggregate data. The research findings indicate a remarkable promotion in accuracy of loss reserving, especially when the claims amounts are not too heavy-tailed.

Suggested Citation

  • Jinlong Huang & Chunjuan Qiu & Xianyi Wu, 2015. "Stochastic Loss Reserving in Discrete Time: Individual vs. Aggregate Data Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2180-2206, May.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2180-2206
    DOI: 10.1080/03610926.2014.976473
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.976473
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.976473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    2. Lu Xiong & Vajira Manathunga & Jiyao Luo & Nicholas Dennison & Ruicheng Zhang & Zhenhai Xiang, 2023. "AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods," Risks, MDPI, vol. 11(7), pages 1-17, July.
    3. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    4. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2180-2206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.