IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i1p1-8.html
   My bibliography  Save this article

Semiparametric model for prediction of individual claim loss reserving

Author

Listed:
  • Zhao, Xiao Bing
  • Zhou, Xian
  • Wang, Jing Long

Abstract

The estimation of loss reserves for incurred but not reported (IBNR) claims presents an important task for insurance companies to predict their liabilities. Conventional methods, such as ladder or separation methods based on aggregated or grouped claims of the so-called "run-off triangle", have been illustrated to have some drawbacks. Recently, individual claim loss models have attracted a great deal of interest in actuarial literature, which can overcome the shortcomings of aggregated claim loss models. In this paper, we propose an alternative individual claim loss model, which has a semiparametric structure and can be used to fit flexibly the claim loss reserving. Local likelihood is employed to estimate the parametric and nonparametric components of the model, and their asymptotic properties are discussed. Then the prediction of the IBNR claim loss reserving is investigated. A simulation study is carried out to evaluate the performance of the proposed methods.

Suggested Citation

  • Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:1-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00012-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    2. Haastrup, Svend & Arjas, Elja, 1996. "Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 139-164, November.
    3. Hesselager, Ole & Witting, Thomas, 1988. "A Credibility Model with Random Fluctuations in Delay Probabilities for the Prediction of IBNR Claims(*)," ASTIN Bulletin, Cambridge University Press, vol. 18(1), pages 79-90, April.
    4. Jewell, William S., 1990. "Predicting IBNYR Events and Delays II. Discrete Time," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 93-111, April.
    5. Kaminsky, Kenneth S., 1987. "Prediction of IBNR claim counts by modelling the distribution of report lags," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 151-159, April.
    6. Hess, Klaus Th. & Schmidt, Klaus D., 2002. "A comparison of models for the chain-ladder method," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 351-364, December.
    7. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    8. Mack, Thomas & Venter, Gary, 2000. "A comparison of stochastic models that reproduce chain ladder reserve estimates," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 101-107, February.
    9. Spreeuw, Jaap & Goovaerts, Marc, 1998. "Prediction of claim numbers based on hazard rates," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 59-69, October.
    10. J. Fan & M. Farmen & I. Gijbels, 1998. "Local maximum likelihood estimation and inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 591-608.
    11. Herbst, Tomas, 1999. "An application of randomly truncated data models in reserving IBNR claims," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 123-131, November.
    12. Jewell, William S., 1989. "Predicting Ibnyr Events and Delays: I. Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 25-55, April.
    13. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    14. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    15. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    2. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    3. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    4. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    5. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    6. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    7. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    8. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    9. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    10. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    11. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    12. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    13. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    14. Denuit, Michel & Trufin, Julien, 2016. "Collective Loss Reserving with Two Types of Claims in Motor Third Party Liability Insurance," LIDAM Discussion Papers ISBA 2016029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    2. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    3. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    4. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    5. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    6. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    7. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    8. Crevecoeur, Jonas & Antonio, Katrien & Desmedt, Stijn & Masquelein, Alexandre, 2023. "Bridging the gap between pricing and reserving with an occurrence and development model for non-life insurance claims," ASTIN Bulletin, Cambridge University Press, vol. 53(2), pages 185-212, May.
    9. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    10. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    11. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    12. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    13. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    14. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    15. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    16. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    17. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    18. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    19. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    20. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.